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ABSTRACT
This paper considers interference cancellation in radar

systems when the signal environment is non-stationary and

focuses on the extended sample matrix inversion algorithm

(ESMI) first proposed by Hayward [1]. An explicit expres-

sion of the signal to noise plus interference ratio (SINR)

obtained by this ESMI algorithm is given and analyzed.

Compared to the SMI algorithm, it is shown that the per-

formance improves for mainlobe jammers but degrades for

sidelobe jammers. To overcome this drawback, an alterna-

tive constraint strategy is proposed which attains the good

performances of the standard ESMI algorithm whatever the

position of the jammers. Finally, the explicit expressions of

these SINR are compared to Monte Carlo simulations w.r.t.

implementation conditions.

1. INTRODUCTION
The problem of interference cancellation in radar environ-

ments has been extensively studied with stationary signals.

For non-stationary conditions, Hayward proposed in 1996

an extension of the stationary effective Sample Matrix In-

version Algorithm (SMI, [2]) that he called Extended SMI

(ESMI, [1]). It consists in calculating a time-varying spatial

filter and is based on its series decomposition. The first ob-

jective of the algorithm is to perform well in the context of a

rotating antenna with mainlobe jammers whereas the stan-

dard SMI degrades [3]. Simulations have thus shown an

important improve of performances over those of the SMI

algorithm [1].

However, in the case of a rotating antenna with jammers

distant from the target, the performance of this ESMI algo-

rithm can degrade compared to the standard SMI algorithm.

Thus, a practical rule could consist in using the ESMI algo-

rithm only in the neighbourhood of the jammers. However,

because the jammers positions are in fact often unknown,

the previous choice is not so easy. It would be preferable

to use a single algorithm for all situations. The objective of

this paper is to propose an alternative constraint to the con-

straints introduced in [1] to be used whatever the jamming
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situation and to analyze the performances of this ESMI al-

gorithm.

This paper is organized as follows. The problem state-

ment is given in Section 2, with a special attention to the

data radar used to compute the adaptive weights and to form

the beamformer. In Section 3, explicit expressions of the

SINR are given for the standard ESMI algorithm and for the

proposed ESMI algorithm based on an alternative constraint

suggested by the Generalized Sidelobe Canceller (GSC).

2. PROBLEM STATEMENT
2.1. Radar environment and training data hypotheses

Let suppose that the environment be composed of jammers,

thermal noise, and a moving target. The ground-based radar

emits an M - pulse waveform at pulse repetition interval
T . In each PRI (Pulse Repetition Interval), the data is di-
vided into two sets called primary and secondary data. The

primary data consists of the samples to be filtered and is

composed by interference (jammers and thermal noise) and

possibly signal. The secondary data is the training data,

and is supposed to be only made of jamming and thermal

noise components. Let denoteN , the number of secondary
samples in each PRI. To calculate the spatial filter to ap-

ply on the primary data of the whole CPI (Coherent Pro-

cessing Interval), we dispose of NM samples. We suppose

that the J jammer signals {j
(m,j)
n }n=1..N,m=1..M,j=1..J are

zero-mean, with power σ2
J . They are spatially correlated,

but temporally white, independant from each other and sup-

posed to be static.The thermal noise {n
(m)
n }n=1..N,m=1..M

is modelled by a white complex process, with power σ2
N

(that will be unitary in the following). The signal is consid-

ered as deterministic, with unknown power σ2
S but known

direction. We note {x
(m)
n }n=1..N,m=1..M the K- dimen-

sional secondary data (K being the number of sensors) and
have :

x(m)
n = j(m)

n + n(m)
n

where j
(m)
n =

∑J
j=1 j

(m,j)
n .
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2.2. Context and performance analysis
We consider an arbitrary array antenna. We consider a situ-

ation where it is rapidly rotating to the CPI scale, but slowly

compared to a PRI [3]. Based on secondary samples, several

implementations schemes for the SMI algorithm are possi-

ble, depending on the frequency update of the spatial filter

in the CPI. To simplify, we restrict ourselves to the calculu-

tion of one filter per PRI or one per CPI and compare their

advantages and drawbacks in the following table :

Alg. SMI/PRI SMI/CPI

+ robust to rotation degrades with rotation

- lack of samples exploits all samples

In such a situation, we see that none of the previous so-

lutions is satisfactory and the use of the ESMI algorithm is

then justified. The latter is calculated from all the secondary

data of the CPI and the resulting time varying spatial filters

are applied on each PRI.

In order to evaluate the performance of the proposed

processing, we need to take into account the filtered signal

on the whole CPI. We choose the spatio-temporal SINR cor-

responding to a space-time processing [4] with a non adap-

tive temporal filter. The expression of the SINR is given by

: SINR =
σ2

S|WH
Φ|

2

WHRW
, where R is the total noise spatio-

temporal correlation matrix. In the latter expression, we

have introduced the spatio-temporal filter :W =

⎛
⎜⎝

w1
S
...

wM
S

⎞
⎟⎠

where {wm
S }m=1..M are spatial filters and where Φ is the

spatio-temporal steering vector. Because the angle variation

due to rotation is weak, we neglect the loss due to the spa-

tial steering vector φ (with ‖φ‖
2

= K) variation. Thus,

we will write Φ =

⎛
⎜⎝

φT (1)φ
...

φT (M)φ

⎞
⎟⎠ whether the antenna is

rotating or not and where φT (m) represents dephasing due
to Doppler effect. Moreover, we will withdraw the signal

power, because it disappears in both normalizations.

3. ESMI ALGORITHMS
3.1. Standard ESMI algorithm

In our context, the spatial noise covariance is time-varying,

that is RS = RS(t) = E
{
xtx

H
t

}
. Hayward’s idea [1]

has been to write the spatial filter wS(t) = w0 + t∆w. In

that case, the Minimum Variance Distortionless Response

(MVDR) problem (see e.g., [5]) becomes :

min(w0,∆w)/w(t)Hct=1 E
{∣∣(w0 + t∆w)Hxt

∣∣2} (1)

where different constraints ct are proposed in [1].

With x̃t
def
=

(
xt

txt

)
, w̃

def
=

(
w0

∆w

)
, and c̃ a con-

straint associated with ct, (1) becomes :

minw̃/w̃H c̃=1 E
{∣∣w̃H x̃t

∣∣2}
The implementation of this standard minimization is then

realized by a SMI algorithm which in that case is called the

ESMI algorithm :

ˆ̃w = R̂−1c̃ (2)

where R̂=

0
@ R̂(0) R̂(1)

R̂(1) R̂(2)

1
Awith R̂(j)=

PM,N
m,n=1 t

j
m,nx

(m)
n x

(m)H
n

NM
.

Different types of constraints can be used for the ex-

tended filter. One and several independant constraints have

been proposed in [1]. However, the most classical one con-

sists in imposing a constraint onw0, while leaving∆w un-

constrained (see e.g., [7] where c̃ =

(
φ

0

)
). The perfor-

mance analysis in SINR of this ESMI algorithm is analysed

in the following.

3.2. Performance analysis of the standard ESMI

First, let us show that the performance analysis done on

thermal noise alone is also valid in presence of a single

sidelobe jammer. Consider a stationary scenario for which

RS = σ2
JφJφH

J + σ2
NI where φJ denotes the jammer spa-

tial steering vector. After straightforward algebra manipu-

lations, the following SINR is obtained :

SINR=φH
R

−1
S

φ= K

σ2
N

0
BB@1−

|φH φJ |
2

K
σ2

N
σ2

J

+K2

1
CCA

This implies that SINR ≈ K
σ2

N

if
|φHφJ |

2

K2 � 1, i.e., if the

jammer is in antenna sidelobes. When several jammers are

present in antenna sidelobes, an analytic proof of the equiv-

alence is more delicate. However, it can be shown through

simulations that the previous result remains valid.

The analysis is performed in exact statistics where the

estimated matrices R̂(j) are replaced by their expectation.

Thus, we have R̂(j) ≈ σ2
NsjIwith sj=

1
NM

P
M
m=1

P
N
n=1 tj

m,n.

Then suppose that the secondary data corresponds to the

last samples of each PRI which contains the total numberL
of samples. After withdrawing the sampling period which

does not intervene in the calculutions, we have : tm,n =
mL−N −1+n. The following normalized (w.r.t. the opti-
mal SINR obtainedwith amotionless array) spatio-temporal

SINR at the filtered range gate k is proved in Appendix 6.1.

ρ=
(s2−ks1−s1(M−1

2 )L)
2

 
(s2−ks1)2−s1(s2−ks1)(M−1)L+

s2
1
(M−1)(2M−1)L2

6

! (3)
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To illustrate this involved formula, we first note that it is

observed by simulation, this SINR approximately depends

on L and N through their ratio L
N . Then we set default

values to k = 0, M = 10, N = 100 and L = 2000 (first
column of the following tabular) and test the influence of

each of the parameters (other columns) while keeping the

others unchanged.

k=1899 M=1 M=100 L
N

=2 L
N

=200

ρ −3.65 −6.54 0 −5.71 −4.02 −3.65

We notice that k andM have a greater influence on the

SINR than L andN .

In order to remedy this loss in performance, we propose

to derive its (GSC) form [6].

3.3. GSC form of ESMI

The algorithm ESMI corresponds to the implementation of

the direct solution of a MVDR problem. But the problem is

equivalent to an unconstrained one written in its GSC form

[6] represented on the following figure :

Figure 1 : GSC form corresponding to ESMI

We denote B̃ the blocking matrix such that B̃φ̃ = 0.

The relation between the spatial filter w̃ and the GSC filter

w̃0 is the following :

w̃ = φ̃ − B̃Hw̃0

where w̃0 =
(
B̃R̃B̃H

)
−1 (

B̃R̃φ̃
)
.

A problem occuring with the use of the ESMI algorithm

comes from the fact that is impossible to choose a block-

ing matrix B̃ such that no signal component is present in

the auxiliary data of the GSC algorithm. Indeed, the vec-

tor

(
0

φ

)
which is orthogonal to φ̃ belongs to span(B̃).

This statement suggests us to use another constraint, which

is expressed in the following.

3.4. An optimal constraint strategy

In order to avoid suppressing signal part after filtering, we

propose to choose a constraint vector φ̃ =

(
φ

αφ

)
and

look for an optimal (in a certain sense) value for α.

After using the same method as in the previous subsec-

tion, the following normalized SINR is obtained when this

alternative constraint is used :

ρ=1−s2
4

0
@ (M−1)(M+1)L2

12

s2
3−s3s4(M−1)L+

s2
4(M−1)(2M−1)L2

6

1
A (4)

where s3 = s2−ks1−α′s1 and s4 = s1−α′ with α′
def
= α

Te
.

We know that the normalized SINR is upper bounded by

one and see in (4) that this upper bound is achieved when

s4 = 0, that is for αopt = s1Te = [ (M+1)L−(N+1)
2 ]Te.

Figure 2 : Position of α in the CPI

As shown on Figure 2, the optimal constraint obtained

by our approach is intuitive because it consists in imposing

that the weight vector has a unit gain in the steering direc-

tion at a time corresponding approximately to the “middle”

of the CPI that we can note Tmiddle = α. The constraint
writes : wS(Tmiddle)

Hφ = 1.
It is worth noticing that this optimal value ρ = 1 does

not depend on the tested range gate k contrary to the stan-
dard ESMI algorithm (see (3)). However, the next figure

shows that the SINR is very sensitive to the value of α at
the different distant range gates.
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4. SIMULATIONS
We now present simulations to compare the performance of

the two previous constraints used with the ESMI algorithm

with a uniform linear array antenna. For the simulation, we

use the following typical radar parameters:

K M N L θJ (deg)

8 10 100 2000 35

σ2
N (dB) σ2

J (dB) NJ α T (s)
0 50 1 0.0109 2e-4
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We compare performances when the antenna is rotating

to the realistic speed of 1/2 turn/sec, which corresponds to a
rotation of 0.06 radians during the CPI or 0.25 beamwidths.
Figure 4 represents the normalized SINRs (w.r.t. the op-

timum value) for three algorithms (SMI, ESMI with the

standard constraint and ESMI with the proposed constraint).

The plots are obtained from Monte Carlo simulation of 100

runs. We compare them to the optimal SINR curve obtained

with a full STAP processing when the covariance R(t) is
known.

0 10 20 30 40 50 60 70 80 90
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
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dB

SINR
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optimal SINR

SMI

ESMI with standard constraint

Figure 4 : Performance of algorithms

On this figure, we first verify that the improve on perfor-

mance due to the use of the ESMI algorithm is significant

in the jammer zone (a gain of about 20 dBs). Then, we no-

tice that the choice of the constraint has not much influence

when the target is close to the jammer. However, when the

jammer is seen in a distant sidelobe, that is when the sit-

uation becomes similar to a situation without jamming, an

important loss (−4 dB in accordance with (3) appears when
the standard constraint is used. On the contrary, the use of

our alternative constraint leads to performances close to the

optimal SINR.

5. CONCLUSION
Though the choice of the constraint used with the standard

ESMI algorithm does not seem to have an influence on its

performance when the jammer is in the antenna mainlobe,

we have shown in this paper that it leads to significant degra-

dations in a situationwithout jammers or with sidelobe ones.

However, we have proved that it was possible to choose a

constraint which allows to attain optimal steady-states per-

formances in terms of SINR, whatever the jamming situa-

tion. We have then proposed a method to derive the corre-

sponding value of the constraint and validated the results by

simulations.

6. APPENDIX
6.1. Derivation of the normalized SINR with the stan-
dard constraint

By using the Frobenius formula on the partitioned matrix

inverse
ˆ̃
R, we obtain from (2) with φ̃ =

(
φ

0

)
:

ŵ0 = (R̂(0) − R̂(1)R̂
−1
(2)R̂(1))

−1φ (5)

∆̂ω = (R̂(1)R̂
−1
(0)R̂(1) − R̂(2))

−1R̂(1)R̂
−1
(0)φ (6)

Then, after simple calculations, we derive the expres-

sions for the quantities (sj)j=0..2 :

s0 = 1

s1 = (M+1)L
2 −

(N+1)
2

s2 = L2(M+1)(2M+1)
6 + (N+1)(2N+1)

6 −
(N+1)L(M+1)

2

By replacing the estimated covariance by their expec-

tation and using the previous notations in (5) and (6), we

obtain the expression of the spatial filter at time t:

ŵS(t) = ŵ0 + t∆̂ω =
(s2 − ts1)

(s2 − s2
1

φ (7)

Then, choosing to study the performance at the range

gate number k, we get:

Ŵ =

⎛
⎜⎜⎜⎝

ŵS(k)
ŵS(L + k)

...

ŵS((M − 1)L + k)

⎞
⎟⎟⎟⎠ (8)

By using (7) and (8), we get the expression of the SINR =
|ŴH

Φ|
2

ŴHRŴ
:

SINR=

˛̨̨
˛̨φH φ

PM
i=1

 
s2−ks1−(i−1)Ls1

s2−s2
1

!˛̨̨
˛̨2

φH φ
PM

i=1

 
s2−ks1−(i−1)Ls1

s2−s2
1

!2

And finally, after straightforward but tedious algebra ma-

nipulationswe obtain expression (3) for the normalized SINR

(ρ = SINR
ΦHR−1Φ

).

—————————————————–
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