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ABSTRACT 

A problem of calculation of line spectral frequencies (LSF) 
is considered. The investigation of mutual LSF location on 
adjacent quasi-stationary frames is performed. It was found 
that in majority of cases LSF inter-frame ordering property 
takes place. On this basis a new approach to LSF calculation 
is proposed. The LSF localization is mainly reduced to 
verification of inter-frame ordering property. The 
computational expenses are reduced in 3.4 times in 
comparison with widely used Kabal's method. Besides, the 
maximum number of operations is lower than the minimum 
expenses of accelerated Kabal's method. The method was 
implemented on fixed-point DSP and showed stable 
performance. 

1. INTRODUCTION 

The majority of modern speech processing methods are 
based on the autoregressive (AR) model where the vocal 
tract is modelled by all-pole filter with coefficients 

pkak ,...,1=, . However in real speech coding applications 

AR coefficients are typically transformed to LSF 
pkk ,...,1, =ω  to decrease spectral quantization errors. The 

calculation of LSF is connected with root finding procedures 
[1, 2] which are undesired for a majority of computational 
devices, especially for fixed-point DSPs since they usually 
cause unpredictable delays and error accumulation. In paper 
[3] the authors proposed a new method of LSF calculation 
based on developed universal method of transcendental 
equations’ solution. Although the proposed approach had 
several essential advantages over existing ones, it did not use 
physical LSF features which, obviously, must contain a good 
reserve for the improvement of the method’s efficiency. 
Many other algorithms also neglect to include information 
on LSF distribution when doing their calculations.

That is why the aim of this investigation is the 
construction of a computationally efficient LSF calculation 
method which optimally exploits the features of their time 
distribution. In the second section the investigation of 
mutual LSF location on adjacent frames is performed and 

the condition of LSF inter-frame ordering is introduced. In 
the third section a new algorithm of LSF calculation based 
on inter-frame ordering property is proposed. In the 
experimental section the proposed method is compared with 
method [3], Kabal-Ramachandran’s method and its 
accelerated modification.  

2. INVESTIGATION OF MUTUAL LSF LOCATION 
ON ADJACENT FRAMES 

Taking into account the connection of LSF with vocal tract 
resonances [4], one can assume that LSF on adjacent quasi-
stationary frames must not differ too much. To verify this 
assumption, consider a speech signal pronounced by a male 
speaker and digitized with sampling frequency of 8000 Hz. 
The spectrogram of this signal is represented at fig. 1. 

Figure 1. The spectrogram of test speech signal. 

To illustrate mutual LSF location on adjacent frames, 
consider three parts of this signal marked at fig.1 as A, B, C. 
Time plots of these segments and corresponding LSF plots 
are presented at figures 2, 3, and 4 respectively. The 
calculation of LSF was performed on 20 ms frames for the 
order of AR model 10=p .

Fig. 2 shows the situation corresponding to the end of 
vowel “e” and the beginning of consonant “t”. It can be seen 
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that though each LSF vary in quite a wide range, almost in 
all situations LSF with number i  lies between LSF of 
previous frame with numbers 1−i  and 1+i . The only 
exclusion is the third LSF of seventh frame which is slightly 
higher (on 4 Hz) than a forth LSF of a previous frame. As is 
seen from the time plot, this situation corresponds to the 
beginning of a new sound (consonant “t”). 

Fig.2. Example of LSF distribution on boundary of two 
sounds. 

Fig. 3. Example of LSF distribution during the continuous 
vowel. 

Fig. 3 shows LSF distribution during a continuous 
sound “l”. On all frames of this speech fragment LSF iω
lies between the previous frame LSF with numbers i  and 

1−i , i.e. the following inequality is satisfied: 
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where the upper indices denote the numbers of frames. 

Fig.4. Example of LSF distribution on boundary of vowel 
and pause. 

At fig. 4 one can see the end of the vowel and a 
following pause filled by background noise. During the 
decaying of the vowel, the LSF spans a relatively wide 
range. Nevertheless, LSF with number i  constantly lies 
between LSF of previous frame with numbers 1−i  and 

1+i . On the time fragment containing background noise 
LSF have a uniform almost time-invariant distribution and, 
obviously, satisfy to inequality (1). The fact that the pauses 
usually take not less than 40-50 % of speech duration, 
additionally enforces the assumption that condition (1) is 
met in a majority of practical situations. 

To verify this hypothesis we tested the condition (1) on 
a speech database of 8 speakers with a total duration of 
8 min (the sampling frequency was equal to 8000  Hz). At 
the preliminary stage we deleted pauses between phrases, 
which allowed to the estimate the lowest probability of 
condition (1). We considered AR model orders from 8 to 20. 
The results of investigation are summarized in Table 1. It 
shows percentages of cases when condition (1) did not fail 
( 0n ), or it failed for one, two or three LSF ( 1n , 2n  and 3n

respectively). 

Table 1. Percentage of cases when condition (1) is met ( 0n )

and when it is not met ( 1n , 2n  and 3n ). 

p=8 p=10 p=12 p=14 p=16 P=18 p=20 

0n 96.7 95.6 94.3 93.1 91.9 90.1 88.8 

1n 2.8 3.6 4.6 5.4 6.3 7.6 8.1 

2n 0.3 0.5 0.7 0.9 1.1 1.4 1.9 

3n 0.1 0.1 0.1 0.2 0.3 0.4 0.5 

As follows from Table 1 inequality (1) is true for a 
majority of cases. Corresponding percentage lies from 
88.85 % at 20=p  to 96.78 % at 8=p . It can therefore be 
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stated that LSF localization problems are primarily reduced 
to verification of inter-frame ordering property (1). 

3. ALGORITHM FOR LSF COMPUTATION 

According to the above mentioned investigation of LSF 
mutual placing, the following algorithm for LSF 
computation is proposed. It is assumed that LSF cosines 

from previous frame },,...,,,{ )1()1(
1
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already known. At first, equations for the cosines of LSF are 
formed [1]: 
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Verification of condition (1) can be easily performed by 
comparison of polynomial function signs at points 
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equation (2) are computed or on the grid 
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nn xxxx −−  for the second equation (2) (it is 

assumed that AR model order is an even number). This is 
illustrated by fig. 5, where the plot of the first polynomial (2) 

is depicted and the cosines of }{ )1( −n
ix  are shown. As can be 

seen, considered function changes sign in points 
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number of polynomial function calls is just 14)4( =+p

(which is a strong contrast to 111 calls for the Kabal-
Ramachandran’s method [1]). 

Fig. 5. Example of LSF cosines’ localization. 

If for some LSF with number i  condition (1) is not met 
(i.e. polynomial function has the same signs in 

points ],[ )1(
1

)1(
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n
i
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i xx ), the verification of root presence is 

verified by algorithm [3]. 
After the localization of LSF cosines, their exact values 

are determined by Newton’s method. At this point it was 

found that for the computation of cosine )(n
kx , a good initial 

approximation is provided by the corresponding value of 

previous frame )1( −n
kx . From fig. 5 one can see that odd LSF 

cosines of the previous frame are a good approximations for 

the odd cosines of the current frame. Finally, LSF }{ kω  are 

obtained from roots }{ kx  by transformation )arccos(x=ω .

4. EXPERIMENTAL RESULTS 

The effectiveness of the proposed method was verified for 
different AR model orders p : 8,10,…,20. For this purpose 

we used a base of five-minute records of four male and two 
female speakers digitized with 8000=sf  Hz. LSF were 

computed for every 20 ms of these signals. 
Table 2 shows average computational expenses 

(in Mflops), corresponding to method described in [3] (in 
brackets) and to the method proposed in this paper. For the 
objectivity of comparison initialization of the Newton’s 
method was taken the same as in [3]. The condition for 

algorithm stop was 610)( −<xf .

Table 2. Computational expenses (Mflops) of method (3) (in 
brackets) and proposed method. 

AR model order 

8 10 12 14 16 18 20 
0.03

(0.05) 
0.04 

(0.08) 
0.06

(0.12) 
0.08

(0.18) 
0.10 

(0.24) 
0.13 

(0.31) 
0.16

(0.38) 

From table 2 it can be seen that proposed algorithm 
provides a reduction of computational expenses from 1.7 
times (for 8=p ) to 2.4 times (for 10=p ). This is explained 

by more perfect LSF localization procedure proposed in this 
paper. 

Since the test speech signals were characterized by a 
variety of speakers and were almost free of pauses, provided 
computational characteristics of proposed method can be 
considered as corresponding upper bounds. During a real 
work of speech coding devices expenses must be lower. 

Now let’s make a comparison of proposed algorithm 
with Kabal-Ramachandran’s method [1], since it is most 
widely used in speech processing applications. Since Kabal-
Ramachandran’s method exploits bisection method of root 
refinement, we also considered its “accelerated” version 
corresponding to root refinement by Newton’s method. 

Table 3 shows average, minimal and maximum numbers 
of operations necessary for the computation of ten LSF at 
one frame by Kabal-Ramachandran’s method, its accelerated 
version, method [3] and the method proposed in this paper. 
The convergence criterion based on the uncertainty of root 

position was used: 3
1 10|| −

− <− kk xx , where 1−kx , kx  - 

approximate root values obtained at successive iterations. 
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Тable 3. Comparison of LSF computation methods. 
Average 

number of 
operations 

Minimum 
number of 
operations

Maximum 
number of 
operations

K.-R. method 2150 2150 2150
Acc. K.-R. method 1498 1491 1557 

Method [3] 1309 1066 1936 
Proposed method 629 428 1428 

From Table 3 follows that proposed algorithm provides 
reduction of computational expenses in comparison with 
Kabal-Ramachandran’s method in 3.42 times. The gain over 
accelerated Kabal-Ramachandran’s algorithm is equal to 
2.38 times. 

One of the main characteristics of method [3] was that 
its peak computational expenses were lower than (time-
invariant) expenses of Kabal-Ramachandran’s method. 
However, the method proposed in this paper has a stronger 
property: its maximum number of operations (1428) is 
lower than that for Kabal-Ramachandran’s method (2150), 
but is also lower than the minimum number of operations 
for the accelerated Kabal-Ramachandran’s method. This fact 
additionally suggests the advantage of application of 
proposed method in real-time systems. The method was 
implemented into a fixed-point ADSP2191 vocoder 
(2.4 kbps). During an hour of continuous testing with 
different speakers the algorithm failed only in 2 of 144000 
cases due to insufficient accuracy of polynomial function 
evaluation in fixed-point 16-bit arithmetic. 

Fig. 6. Example of computational expenses distribution for 
different LSF calculation methods. 

Fig. 6 shows the numbers of operations of different 
methods for the calculation of LSF of test speech signal, the 
spectrogram of which was shown at fig.1 This clearly shows 
the advantage of the proposed method in the context of the 
number of operations. The minimum computational 
expenses take place in pauses filled by stationary 
background noise, while the peaks in the distribution of 
operations take place at abrupt transitions from one sound to 
another. 

5. CONCLUSIONS 

In given paper a simple and effective method of LSF 
calculation was proposed. The main task was to answer a 
question whether LSF of previous time frame can be 
effectively used for the localization of LSF at current time 
frame. It was found that in majority of situations (from 
88.85 % of cases at AR model order 20=p  to 96.78 % of 

cases at 8=p ) a property of “inter-frame ordering” (1) 

takes place. This means that LSF localization task can be 
mainly reduced to the verification whether LSF cosines 
satisfy to inter-frame ordering property. For the localization 
of LSF which do not satisfy this condition, universal 
algorithm of roots’ localization [3] is used. 

During experimental verification of the proposed 
method for different speakers and AR model orders the 
following results were obtained.  

1. The resulting computational savings in comparison 
with method [3], which did not use features of LSF 
distribution, are from 1.8 to 2.5 times (at different AR model 
orders).  

2. For AR model order 10=p  the proposed approach 

reduces computational expenses in comparison with most 
widely used Kabal-Ramachandran’s method in 3.4 times. 
Also there is a 2.4 times gain over the accelerated 
combination of Kabal-Ramachandran’s method with 
Newton’s method. 

3. It was found that the maximum number of operations 
of the proposed method is lower not only than the time-
invariant expenses of Kabal-Ramachandran’s method, but is 
also lower than the minimum number of operations of the 
accelerated combination of Kabal-Ramachandran’s method 
and Newton’s method. 

These facts tell about the advantage of application of 
proposed method in real-time systems. The method was 
realized on fixed-point 16-bit DSP and showed stable work.
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