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ABSTRACT

We present two novel algorithms for optimal MMSE estimation of
the speech spectral amplitude, assuming it has been corrupted by ad-
ditive and uncorrelated noise. The noise DFT coefficients are mod-
elled as Gaussian random variables, while the speech spectral am-
plitude is modelled using either a Chi or a Gamma distribution. The
influence of the priors’ shape parameter is investigated. Results from
simulations that demonstrate the performance of the proposed algo-
rithms for different noise types and SNRs, as well as a comparison
with previously developed MAP estimators are presented.

1. INTRODUCTION

The portability of digital systems with man-machine voice interfaces
allow them to be deployed in environments where background noise
conditions can be adverse. Background noise poses a serious prob-
lem for both voice-based communication and automated services.
Speech enhancing algorithms can restore, to some extent, the noise
corrupted speech, increasing its quality and potentially its intelligi-
bility. The success rate of speech recognition engines can also be
improved.

Most modern speech enhancement algorithms operate in the fre-
quency domain. The transformation to the frequency domain is per-
formed with the Short Time Fourier Transform (STFT), typically
with windows of 30 ms overlapped by 20 ms. An estimator is ap-
plied to approximate the clean speech STFT, which is then trans-
formed to the time domain with the inverse DFT and the overlap and
add method.

Bayesian estimators are very popular in estimating the clean
speech STFT coefficients. The most frequently used estimators are
the Minimum Mean Square Error (MMSE) and the Maximum A
Posteriori (MAP), which can be used to estimate either the DFT co-
efficients of the STFT (real and imaginary part) or their amplitude.
Some assumptions about the distribution of the noise and speech
STFT coefficients must also be made. A typical example is the
Wiener filter where noise and speech DFT coefficients are assumed
to be Gaussian and the estimator applied is the MMSE [1]. Based
on the observation that the speech DFT coefficients are better mod-
elled by a Gamma distribution, Martin in [1] developed an MMSE
estimator with Gamma priors for speech.

A well known method of amplitude estimation is given by Ephr-
aim and Malah [2], who developed an amplitude MMSE estima-
tor assuming that the noise DFT coefficients are Gaussian and the
speech amplitude coefficients follow the Rayleigh distribution. Ob-
serving that speech amplitude coefficients are better modelled by the

Gamma or the Chi distribution, Lotter and Vary [3] and Dat et al. [4]
developed the MAP estimators under the above assumptions.

In this paper we introduce the MMSE estimators with the Gamma
and Chi speech priors. The performance of both MMSE and MAP
algorithms with both priors is evaluated for different types of noise
at different signal to noise ratios. The evaluation is also focused on
the effect of the value of the shape parameter a of the speech priors
(eqs. 2,3).

The organisation of the paper is as follows: In section 2 we
demonstrate the statistical model and the speech priors. In section
3 we introduce the MMSE estimators and review the MAP. Section
4 shows the simulation results and section 5 concludes this paper.

2. STATISTICAL MODEL

2.1. Problem formulation

Assume that we observe a noisy speech signal x(t) that is a sum of a
speech and noise signal s(t) and n(t), which are uncorrelated. Their
representation in the STFT domain is given by:

X(k, l) = S(k, l) + N(k, l) (1)

where X(k, l), S(k, l) and N(k, l) are the (kth, lth) samples of the
noisy speech, the clean speech and the noise signal’s STFT corre-
spondingly. The index k corresponds to the frequency bins and the
index l to the time frames of the STFT. The above complex quanti-
ties can be expressed as a function of their amplitude and phase as:
X ≡ Xejψ , S ≡ Sejφ, N ≡ Nejω

Our objective is to estimate the clean speech spectral amplitude
S given the noisy speech amplitude X and phase ψ. The spectral
amplitude estimate Ŝ will then be combined with the noisy phase ψ
and inversion of the STFT gives the enhanced speech signal.

The estimation of the clean speech spectral amplitude requires
some assumptions about the distributions of S and N. The DFT co-
efficients of noise are assumed to have a Gaussian distribution. This
assumption is supported by the Central Limit Theorem for station-
ary noise and simulation results suggest that it is a quite reasonable
choice for quasi-stationary noise.

Speech on the other hand, is a highly non-stationary signal and
the Gaussian distribution is not necessarily the best model for its
STFT coefficients. In this paper we use two different distribution
functions to model the speech spectral amplitude. These distribu-
tions are quite flexible and their form can be controlled by tuning
their shape parameter a.
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2.2. Speech priors

We now present the models we use for the speech spectral amplitude
(speech priors), which are the Chi and the Gamma.

The functional form of the Chi distribution is given by:

p(S) =
2

θaΓ(a)
S2a−1 exp

»
−S2

θ

–
(2)

This is a Chi distribution with 2a degrees of freedom and scale pa-
rameter

p
θ/2 [5]. Sometimes is known as Generalised Rayleigh

distribution. The parameter a influences the shape of the prior at the
origin, introducing a pole at zero for a < 0.5, while p(0) = 0 for
a > 0.5. The second moment E[S2] of the prior is controlled by
both θ and a and is E[S2] = θa. Well known instances of this dis-
tribution are the Half-Gaussian (a = 0.5) and the Rayleigh (a = 1).

The Gamma distribution is given by [5]:

p(S) =
1

θaΓ(a)
Sa−1 exp

»
−S

θ

–
(3)

The parameter a again influences the behaviour of the distribution
at the origin, introducing the pole at zero for a < 1. The second
moment is given by E[S2] = θ2a(a + 1). The Gamma distribution
simplifies to the Exponential distribution for a = 1.

The phase φ of the speech STFT is assumed to be uniform i.e.
p(φ) = 1

2π
, which can be easily verified by simulations. Addition-

ally, Martin in [1] states that the amplitude and phase are statistically
less dependent than the real and imaginary parts of the STFT coef-
ficients, whose dependence was found to be weak. This observation
allows us to factorise the joint density of the amplitude and phase as:
p(S, φ) = p(S)p(φ). Accordingly, the speech STFT coefficients are
modelled as complex, circular symmetric random variables.

3. DERIVATION OF THE ESTIMATORS

3.1. MMSE estimators

Based on the modelling assumptions made in section 2 we now de-
rive the MMSE speech spectral amplitude estimators, for the two
speech priors presented.

The MMSE estimator is known to be equal to the mean of the
posterior density [2]. Applying Bayes theorem and integrating with
respect to the phase of speech we get the following expression:

Ŝ = E[S|X, ψ] =

Z
∞

0

S p(X, ψ|S)p(S) dSZ
∞

0

p(X, ψ|S)p(S) dS

=

Z
∞

0

Z
2π

0

S p(X, ψ|S, φ)p(S)p(φ) dS dφZ
∞

0

Z
2π

0

p(X, ψ|S, φ)p(S)p(φ) dS dφ

(4)

Given the Gaussian assumption for the distribution of the noise
STFT coefficients, p(X, ψ|S, φ) can be written as:

p(X, ψ|S, φ) =
X

2πσ2
N

exp

»
−X2 + S2 − 2XS cos(ψ − φ)

2σ2
N

–
(5)

where E[N2] ≡ 2σ2
N .

Substituting eqs. 2 and 5 into 4 and solving the integrals we get
the MMSE estimator with the Chi speech priors, which is:

ŜMMSEChi =
q

2σ2
N ζ

Γ(a + 0.5)

Γ(a)

1F1(a + 0.5; 1; R2

2σ2

N

ζ)

1F1(a; 1; R2

2σ2

N

ζ)
(6)

where ζ = θ
θ+2σ2

N

. For the solution of the above integrals we used

eqs. 8.406.3, 8.431.5 and 6.631.1 from [6]. 1F1(α; β; γ) is the Con-
fluent Hypergeometric Function eq. 9.210.1, [6],[7]. The calculation
of 1F1 leads to a numerical overflows for large input values. The
asymptotic expansion found in eq. 13.5.1 in [8] was used in these
cases. The results were then numerically stable for all ranges of in-
put values. The above estimator with a = 1 (Rayleigh speech prior)
is the one found in the well known Ephraim-Malah algorithm [2].

To obtain the MMSE estimator using the Gamma priors we need
to substitute eqs. 3 and 5 into 4 and solve the integrals. The MMSE
estimator can be reduced to a form:

ŜMMSEGamma =
Ψ(a)

Ψ(a − 1)
(7)

where

Ψ(µ) ≡
Z

∞

0

Sµ exp

»
− S2

2σ2
N

− S

θ

–
I0

„
SX

σ2
N

«
dS (8)

where I0(x) is the modified Bessel function of the first kind and zero
order. The above integral has no analytic solution for µ ∈ (−1,∞),
which is the range of interest for our problem. To solve this problem
we resorted to numerical integration. It turns that the integrand in Ψ
is sufficiently smooth to allow convergence in a few iterations of the
Adaptive Lobatto Quadrature [9]. Certain values of the parameters in
Ψ can still cause numerical issues. In these cases the modified Bessel
function was approximated with the formula I0(x) = ex/

√
2πx and

then the integral was calculated analytically with eq. 3.462.1 from
[6]. The relative error in the value of ŜMMSEGamma due to this
approximation was of the order of 10−5

3.2. MAP estimators

Using the statistical model presented in section 2 it is also possible to
derive MAP estimators for both speech priors considered here. The
MAP estimator is known to be the mode of the posterior density.
This can be written as:

ŜMAP = arg max
S

ln (p(S|X, ψ)) (9)

The above estimators can be proven to be [4, 3]

ŜMAPChi = ζ
X

2
+

"„
ζ
X

2

«2

+ (a − 0.75) 2σ2
N ζ

#1/2

(10)

where ζ = θ
θ+2σ2

N

and

ŜMAPGamma = ζ +
ˆ
ζ2 + (a − 1.5)σ2

N

˜1/2
(11)

where ζ = X
2
− σ2

N

2θ
. The MAPGamma algorithm was presented

in [3] with a = 2, and Dat et al. in [4] used the MAPChi and
MAPGamma with a = 0.5 and a = 1.5 respectively.

There are two issues concerning the MAP estimators. The first
is that in maximising analytically the expression in (9) the modified
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(a) Input AvgSegSNR = 0dB
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(c) Input AvgSegSNR = 20dB
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Fig. 1. AvgSegSNR and PESQ results from enhancing speech corrupted with white noise.

Bessel function is approximated, possibly introducing some error in
the estimation. Secondly, when a < 0.75 or a < 1.5 for the Chi and
Gamma priors correspondingly, the problem of finding the global
maximum is no longer well defined. This is because the posterior
density with the approximation of the modified Bessel function has
a pole at zero. The strategy we follow in this case is to set ŜMAP =
Slm, where Slm is the value of S where the posterior density with
the Bessel approximation has a local maximum, while if the local
maximum does not exist we suppress the noisy speech amplitude
sample by a fixed amount i.e. ŜMAP = KX . In the simulations K
was equivalent to 25dB of attenuation.

4. RESULTS

4.1. Simulation setup

To evaluate the performance of the presented algorithms we used 48
sentences from the TIMIT database, uttered by 3 male and 3 female
speakers and downsampled at 8KHz. The sentences were corrupted
with white noise and car noise at 3 different levels of input average
segmental SNR (AvgSegSNR). The performance of the algorithms
was evaluated by the output AvgSegSNR and the PESQ, which is
the International Telecommunication Union (ITU) recommendation
P.862. The STFT transformation was performed with Hamming win-
dows of 256 samples and 75% overlap.

The algorithms were examined for a range of values of the a
parameter of the prior densities. The influence of this parameter on
the algorithms’ performance was then observed. The optimal val-
ues of a for this database are then inferred by the algorithms’ per-
formance. The value of θ was determined using the a priori SNR
ξ = E[S2]/E[N2], and the expressions that relate the second mo-
ment of each prior with θ and a, given in subsection 2.2. This method
of estimation of θ enabled the incorporation of the Decision-Directed
method [2] for the estimation of the a priori SNR into the algorithms,
which helped towards the reduction of the musical noise.

4.2. Evaluation

Figure 1 shows the AvgSegSNR and PESQ scores for each algo-
rithm, for different input AvgSegSNRs and values of a. The corrupt-
ing noise was white and Gaussian. Figure 2 shows the same results
for car noise.

For small values of a the MAPChi algorithm produces musi-
cal noise but some weak speech spectral components are preserved.
As a increases the musical noise peaks reduce but the weaker speech
spectral components are lost. As a increases beyond 0.5 some broad-
band background noise is added, which is believed to cause the in-
crease in the PESQ scores at low input AvgSegSNR. At high in-
put AvgSegSNR, accurate restoration of the weaker speech spec-
tral components probably weighs more than the nature of the resid-
ual noise, which could explain the almost monotonic drop of both
AvgSegSNR and PESQ with increasing a.

The behaviour of the MAPGamma algorithm is quite similar to
that of the MAPChi but the scores in the objective measures are
somewhat better. Although it is not shown in the figures, the PESQ
score of the MAPGamma algorithm increases further after a = 1.8
for low input AvgSegSNR, reaching the level of the peak of the
PESQ curve of the MAPChi, which is found approximately at a =
0.9. The MAPGamma algorithm preserves better the weakest speech
spectral components than the MAPChi, but the musical noise spec-
tral peaks can be somewhat sharper.

For small values of a both MMSE algorithms produce a residual
noise that is much more broadband than the residual noise of the
MAP algorithms for the same a. Additionally, this does not affect
the preservation of weaker speech spectral components, which is as
good as that of their MAP counterparts. A number of musical noise
spectral peaks can be present for small a, but significantly less than
those generated by the MAP algorithms, and of less intensity. As
a increases the few musical noise spectral peaks are eliminated and
replaced by broadband noise. The background noise level increases
with a and the increase is faster for the MMSEChi algorithm.

MMSEChi and MMSEGamma algorithms consistently produce
their best results for a ∈ [0.05, 0.2] and a ∈ [0.2, 0.5] respec-
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(b) Input AvgSegSNR = 10

23.5

23.7

23.9

24.1

24.3

24.5

24.7

24.9

25.1

25.3

25.5

0
.0

1

0
.0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

MapChi

MapGamma

MmseChi

MmseGamma

a

A
vg

Se
gS

N
R

(c) Input AvgSegSNR = 20
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Fig. 2. AvgSegSNR and PESQ results from enhancing speech corrupted with car noise.

tively. The AvgSegSNR scores obtained for these values are among
the highest obtained with any algorithm and any input AvgSegSNR.
An exception to this is found for the car noise at the 0 dB input
AvgSegSNR. The MAP algorithms in this case suppress more the
background indeed, but they also suppress the few first speech har-
monics, where most of the noise energy was concentrated. The
MMSE algorithms on the other hand, retain slightly more back-
ground noise, but they also keep the first harmonics intact. This
difference in the quality of the resulting speech is demonstrated in
the PESQ scores which clearly favour the MMSE enhanced signals.
The MMSE algorithms also obtain the best PESQ scores for values
of a in the above mentioned ranges, for all noise types and input
AvgSegSNRs. This should be attributed to their ability to preserve
the weaker speech spectral components, while the residual noise is
more broadband than that of their MAP counterparts.

We should finally mention the good performance of the MAP al-
gorithms with very small values of a (∼ 0.01) at high input AvgSeg-
SNRs. Their success is due to their ability to preserve the weak
speech components, while the musical residual noise is very low to
be perceptually harmful at these low input noise levels. However, for
low input AvgSegSNR, MAP algorithms with very narrow speech
priors produce a lot of musical noise and they do not consist a good
option.

5. CONCLUSION

In this paper we presented four Bayesian speech enhancement algo-
rithms, that included the MAP and MMSE estimators with Chi and
Gamma speech priors. The newly introduced MMSE algorithms
resulted to an increase in the AvgSegSNR at least as good as that
of their MAP counterparts while they demonstrated a further in-
crease in the PESQ scores. This reflects their ability to preserve
the weaker speech spectral components, while the residual noise has
a much more broadband character compared to the residual noise of
the MAP algorithms.
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