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ABSTRACT

In this paper we propose a method for estimating the non-stationary
noise power spectral density (PSD) given a noisy speech signal. The
method is based on an autoregressive (AR) model of the speech PSD
dynamics combined with a Kalman filtering based noise PSD esti-
mation technique. Objective and subjective performance evaluations
show that the speech enhancement scheme utilizing the proposed
noise PSD estimation technique achieves significant improvements
over a system using a stationary noise estimate as well as compared
to a system that uses a noise tracker developed in our previous work.

1. INTRODUCTION

The class of speech enhancement techniques based on short-time
spectral amplitude (STSA) estimation (see [1, 2, 3]) have proved to
be of particular practical interest due to their low complexity and rel-
atively good performance. As most single-channel speech enhance-
ment (SE) methods, STSA based techniques require a power spectral
estimate of the noise process in order to extract a clean speech signal
estimate from a noisy realization. As any SE scheme, the perfor-
mance of STSA based techniques is much affected by the capability
to track variations in the statistics of the noise [4], particularly under
low signal-to-noise ratio (SNR) conditions and non-stationary noise
environments. In [4] a recursive scheme for noise estimation, com-
monly known as the minimum Statistics (MS) method, is designed to
be combined with STSA speech enhancement schemes. The method
is based on tracking the noisy speech spectral minima without any
distinction between speech activity and speech pause, enabling the
algorithm to update the noise estimate even in the regions where
speech is present. A similar method is described in [5], where the
response of the noise estimator to the rise of the noise level is im-
proved by periodogram smoothing across both time and frequency
and speech presence probability estimation.

In [6], we proposed a method for noise power spectral density
(PSD) estimate that is based on the application of the Kalman filter-
ing technique in the STSA context. Objective and subjective perfor-
mance evaluations [6] showed that the proposed scheme exhibits a
good noise tracking performance and that it achieves improvement
in the quality of the enhanced speech as compared to the case where
the noise PSD estimate remains invariant across time. Listening test
results indicated a statistically significant improvement in the quality
of enhanced speech compared to the fixed noise PSD estimate case.

This research was partly supported by Philips Research and the Technol-
ogy Foundation STW, applied science division of NWO and the technology
programme of the ministry of Economics Affairs.

The Kalman filtering based noise PSD scheme in [6] is based
on a simple, low order model of the speech power spectrum. In
this paper we look into the speech PSD modelling problem and de-
rive an AR model of the speech PSD dynamics. The model is then
used in the Kalman filtering based noise PSD estimator [6]. Both
subjective and objective evaluation results show improvement of the
performance with the model of the speech PSD dynamics presented
in this paper.

2. STOCHASTIC MODEL OF THE NOISY SPEECH
POWER SPECTRUM

To derive a stochastic model of the noisy speech power spectrum, we
assume that the noise is additive. Therefore, the short-time Fourier
transform (STFT) of the noisy speech signal can be written as

Y (k, l) = S(k, l) + N (k, l) (1)

where Y (k, l), S(k, l), N (k, l) denote STFT coefficients of the noisy
speech signal, clean speech and the noise, respectively, k denotes
the frequency bin index and l represents frame index. Furthermore,
we assume that speech and noise are uncorrelated random processes
and that the STFT coefficients are Gaussian complex variables (see
e.g. [2, 3]). It can then be shown that the magnitude square of the
noisy speech STFT coefficients are exponentially distributed random
variables for all k and l with a probability density function given by

f|Y (k,l)|2(x) = 1

λs(k, l) + λn(k, l)
exp

{
− x

λs(k, l) + λn(k, l)

}

(2)

with x ≥ 0. Variances of the speech and the noise STFT coeffi-
cients in (2) are denoted λs(k, l) = E{|S(k, l)|2} and λn(k, l) =
E{|N (k, l)|2}, respectively.

Next, define the stochastic process

y(k, l) = (
λs(k, l) + λn(k, l)

)
e(k, l) (3)

where e(k, l) is an exponentially distributed random variable with
mean and variance equal to 1. It is easy to verify that the probability
density function (pdf) of y(k, l) is identical to that of |Y (k, l)|2 given
in (2).

Since the noise and speech processes are generally non-stationa-
ry, their respective PSD’s change across time. Consequently, the
PSD of the noisy signal is also time-varying. In the following we
set up a model to represent these variations of the speech PSD.

To derive the model, we assume that the time-series consisting
of the squared magnitude of the clean speech STFT coefficients at a
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particular frequency bin index k can be modelled by a linear, nonzero
mean, time varying AR model as

s(k, l) −
Nk∑
i=1

ai (k, l)s(k, l − i) = es(k, l)ws(k, l) + δ(k, l) (4)

with s(k, l) = |S(k, l)|2, where δ(k, l) is the mean of the model,
ws(k, l) is drawn from a white Gaussian noise process with zero
mean and variance one and es(k, l) is a positive, real valued param-
eter.

Because λs(k, l) can not be observed from the clean speech pe-
riodogram, we follow the strategy of [4] and use a recursive pe-
riodogram smoothing technique to obtain an estimate of the clean
speech power spectrum

λs(k, l) = αλs(k, l − 1) + (1 − α)s(k, l). (5)

After computing the mean δ(k, l) by taking expectation on both sides
of (4) and substituting (4) in (5) we obtain

s(k, l) =
Nk∑
i=1

ai (k, l)

1 − (1 − α)�(k, l)
s(k, l − i)+

+ es(k, l)

1 − (1 − α)�(k, l)
ws(k, l)+ α�(k, l)

1 − (1 − α)�(k, l)
λs(k, l − 1)

(6)

where

�(k, l) = 1 − a1(k, l) − a2(k, l) ... − aNk (k, l). (7)

We model the noise PSD dynamics using a linear, time varying AR
model. For simplicity, we use a first order model from [6]

λn(k, l + 1) − b1(k, l)λn(k, l) = en(k, l)wn(k, l) (8)

where wn(k, l) is drawn from a white Gaussian noise process with
zero mean and variance one and en(k, l) is a positive, real valued
parameter. It is straightforward to generalize the noise model for
the higher orders. In order to use (4), (5) and (8) in the noise PSD
estimator based on Kalman filtering [6] we need to rewrite these
equations in the state space form. To this aim, we introduce state
variables r(k, l) = αλs(k, l − 1), λn(k, l) and

q(k, l) = a1(k, l)

1 − (1 − α)�(k, l)
s(k, l − 1).

We can rewrite (6) and (8) in state space form as

x(k, l + 1) = A(k, l)x(k, l) + E(k, l)w(k, l) (9)

where

x(k, l) = [
q(k, l) · · · q(k, l − Nk + 1) r(k, l) λn(k, l)

]T

is the state vector,

A(k, l) =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1(k, l) · · · βNk (k, l) βλ(k, l) 0
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
γ1(k, l) · · · γNk (k, l) α + (1 − α)βλ(k, l) 0

0 · · · 0 0 b1(k, l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

E(k, l) =
[

β1(k,l)es (k,l)
1−(1−α)�(k,l) 0 · · · 0 α(1−α)es(k,l)

1−(1−α)�(k,l) en(k, l)
]T

,

βi (k) = ai (k, l)

1 − (1 − α)�(k, l)
, βλ(k, l) = �(k, l)α

1 − (1 − α)�(k, l)
,

γi (k, l) = α(1 − α)
βi (k, l)

β1(k, l)

and where w(k, l) is drawn from a white Gaussian noise process with
zero mean and variance one. Finally, we write (3) in matrix form as

y(k, l) = Cx(k, l)e(k, l) (10)

where
C =

[
0 · · · 0 1

α 1
]
.

Since the variances of the speech and the noise processes and the
squared magnitude of the STFT coefficients must be larger than zero,
the entries in the state vector x(k, l) have to satisfy the following
constraint

q(k, l) ≥ 0, r(k, l) ≥ 0 and λn(k, l) ≥ 0 (11)

for all k, l. Equations (10) and (9) together with the constraint (11)
form the state space model for the noisy speech power spectrum dy-
namics.

3. ESTIMATION OF THE MODEL PARAMETERS

To use the model presented in Section 2 we must determine the
model order and the model parameters ai (k, l), es(k, l) in (4) and
b1(k, l), en(k, l) in (8). We note that the state space model formu-
lated in (9), (10) allows for time varying model parameters. Thus, the
model parameters can be estimated from the noisy data on a frame-
by-frame basis or recursively updated from past estimates in an adap-
tive model estimation structure. In this paper we choose a simpler
approach where the model parameters are estimated in an off-line es-
timation procedure. At run-time the estimated model parameters re-
mains constant across time but they vary across frequency. Our aim
was to investigate a possibility to improve the performance of the
scheme in [6] with the least added computational complexity. Note
that by using time invariant coefficients of the model we consider
average spectral behavior. Performance evaluation results reported
in this paper show that taking into account average spectral behavior
improves performance of the scheme in [6]. Further improvements
that can be achieved by time varying model of the noisy speech PSD
dynamics are topics for further research.

To estimate the parameters of the AR model (4), we consider
a clean speech signal that consists of four different speech utter-
ances. The utterances, two from male and two from female speak-
ers are taken from the TIMIT database and downsampled to 8 kHz.
We obtain the squared magnitude of the speech STFT coefficients
s(k, l) = |S(k, l)|2 by using the discrete Fourier transform of the
signal frames extracted with a Hanning window of 256 samples and
use of an inter frame overlap of 50%. These settings are the same
as those of the STFT enhancement scheme used for the performance
evaluation reported later. Then, we use the Levinson-Durbin algo-
rithm as described in [7] to solve augmented Wiener-Hopf equation
for forward linear prediction. Coefficient en(k, l) is obtained from
the variance of the linear prediction error.

In this paper, we set the clean speech AR model order Nk = 2
for all k. Experiments with a larger order model do not show im-
provement in the noise PSD tracking performance. Together with
the smoother (5) and noise model (8) the state space model (9), (10)
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that is used for Kalman filtering has the order of 4. We note here the
AR model order does not need to be equal for all frequencies. Espe-
cially for the frequency bands that contain significant speech energy
further improvement can be obtained by finding an optimal "model
order distribution" over frequency. This is topic for further research.

4. KALMAN FILTERING BASED NOISE POWER
SPECTRAL DENSITY ESTIMATOR

The model of the noise PSD dynamics given in Section 2 with pa-
rameters estimated as described in Section 3 is used in the Kalman
filtering based noise PSD estimator [6]. The Kalman filtering struc-
ture for the noise PSD estimation is given by

x̂(k, l + 1) = A(k)x̂(k, l) + K (k, l)
(
|Y (k, l)|2 − Cx̂(k, l)

)
(12)

with the Kalman gain given by

K (k, l) = A(k)Qe(k, l)CT
(
C

(
2Qe(k, l) + Q̂(k, l)

)
CT

)−1
(13)

where

Qe(k, l +1) = (
A(k)− K (k, l)C

)
Qe(k, l)

(
A(k)− K (k, l)C

)T +
K (k, l)CQe(k, l)CT K T (k, l)+

C Q̂(k, l)CT + EQw(k, l)ET

is the variance of the estimation error and

Q̂(k, l + 1) = (
A(k) + K (k, l)C

)
Q̂(k, l)

(
A(k) + K (k, l)C

)T +
2K (k, l)CQe(k, l)CT K T (k, l) + EQw(k, l)ET .

Implementation of the Kalman filter (12) for the new model of the
noisy speech power spectrum dynamics is straightforward.

5. PERFORMANCE EVALUATION

The performance evaluation of the Kalman filtering based noise track-
ing algorithm [6] with the improved model of the speech PSD dy-
namics (9), (10) consists of two parts. First we show the tracking ca-
pability of the algorithm for nonstationary white noise. Secondly, we
compare the performance of the estimator [6] with the scheme pro-
posed in this paper. Speech enhancement in the evaluations has been
performed by using the log spectral amplitude (LSA) enhancement
scheme [3]. We perform an objective as well as a subjective quality
assessment of the enhanced speech samples. Speech utterances that
we use in evaluation of the proposed estimator are different from the
utterances that are used in the estimation of the AR models of the
clean speech PSD dynamics.

To show the tracking capability of the proposed noise PSD esti-
mator we degrade the speech signal with non-stationary white Gaus-
sian noise. The SNR in the noisy speech signal is 30 dB for the first
3.75 seconds of the signal. After that, the noise level rises with the
constant rate of 0.15 dB/frame up to 0 dB SNR where it stays con-
stant for the remaining part of the signal. To ease the visualisation
of the results, we adopted the procedure used in [4, 5] and compute
the average noise PSD estimate across frequency for each frame.
We emphasize that this frequency averaging is only done for pre-
sentation purposes. The proposed method does not exploit a priori
knowledge that the noise source in this case is spectrally flat. From
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Fig. 1. The mean over frequency of the noisy speech sample power
spectrum and the noise PSD estimates obtained with different noise
estimators.

the Figure 1 we observe that the proposed estimator tracks variations
in the noise level in the noise region even during the speech presence.

Next, we consider speech signals degraded by white, babble,
factory and car noise, at various SNR levels. We compare the per-
formance of the LSA enhancement scheme [3] for the noise PSD
estimator [6] (KF in Table 1), the noise estimator proposed in this
paper (ArKF in Table 1) and the case when no noise tracking is per-
formed (NNT in Table 1). In this case we compute a Bartlett estimate
of noise PSD in the noise only region preceding the speech signal
and keep this value as the noise level estimate for the whole duration
of the signal. We also give values of the various distortion measures
for the noisy speech sample (NS in Table 1). For objective quality
assessment we use the symmetric Itakura-Saito distortion measure
(sym.I.S in Table 1) [8], segmental SNR measure (S.SNR in Table
1) and log likelihood ratio distortion measure (L.L.R. in Table 1)
[9, 7]. The results of the objective quality assessment show that all
considered distortion measures indicate improvement of the perfor-
mance when the proposed noise PSD estimator (ArKF) is used in the
enhancement scheme.

For subjective evaluation an OAB listening test was performed
with nine participants, the authors not included. We compare the
performance of the noise PSD estimator [6] and the proposed esti-
mator. In this listening test we used babble, factory and car noise at
5 dB and 15 dB SNR. For each noise source and noise level we pre-
sented listeners two female and two male sentences. The listeners
were presented first the noise free signal followed by the two dif-
ferent enhanced signal in randomized order, and this was repeated
three times for each series. For speech signals corrupted with babble
noise the proposed scheme was preferred above the noise tracker [6]
in 79.15 % (15 dB) and 87.13 % (5 dB) of the cases, for factory noise
in 87.5 % (15 dB) and 72.93 % (5 dB) cases and for car in 96.86 %
(5 dB) and 100 % (15 dB).

6. CONCLUSIONS AND DISCUSSIONS

We presented a method for noise PSD tracking in noisy speech sig-
nals. The method is based on an autoregressive (AR) model of the
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White noise
Input SNR 0 dB Input SNR 5 dB Input SNR 10 dB Input SNR 15 dB

S.SNR sym.I.S. L.L.R S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R
NS -3.65 7191.3 1.66 -1.27 3177.1 1.55 2.03 2078.4 1.44 5.69 2485.0 1.39

NNT -1.00 5633.4 1.53 1.26 1035.3 1.48 3.86 1734.2 1.34 5.91 1855.3 1.12
KF -1.09 160.08 1.38 2.38 635.58 1.28 4.44 1035.4 1.25 6.73 334.4 1.07

ArKF 0.00 103.76 1.32 3.56 34.75 1.22 5.81 33.44 0.95 8.06 36.39 0.71
Babble noise

Input SNR 0 dB Input SNR 5 dB Input SNR 10 dB Input SNR 15 dB
S.SNR sym.I.S. L.L.R S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R

NS -3.61 2363.2 1.87 -0.86 1337.8 1.76 2.42 999.39 1.67 6.20 379.79 0.63
NNT -1.77 1838.9 1.33 0.66 1017.3 1.10 2.78 496.50 0.81 6.48 296.53 0.55
KF -1.65 865.68 1.30 0.91 857.77 0.99 3.58 293.63 0.79 6.79 94.65 0.31

ArKF -1.04 278.92 0.79 1.70 101.05 0.61 4.68 41.04 0.45 8.33 15.37 0.19
Factory noise

Input SNR 0 dB Input SNR 5 dB Input SNR 10 dB Input SNR 15 dB
S.SNR sym.I.S. L.L.R S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R

NS -3.57 1939 1.36 -0.86 1146.7 2.25 2.34 3831.2 0.92 6.03 1513 0.74
NNT -1.89 391.23 1.31 -0.03 1019.2 1.79 3.02 812.91 0.89 6.52 341.3 0.58
KF -1.03 203.03 1.30 1.09 712.83 1.11 3.91 246.96 0.89 6.82 82.24 0.51

ArKF 0.01 94.47 0.87 2.39 60.26 0.68 5.29 45.35 0.50 8.24 40.98 0.35
Car noise

Input SNR 0 dB Input SNR 5 dB Input SNR 10 dB Input SNR 15 dB
S.SNR sym.I.S. L.L.R S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R. S.SNR sym.I.S. L.L.R

NS -2.96 4079.3 0.51 -0.05 4777.3 0.41 3.36 5067.3 0.34 7.19 5892.7 0.25
NNT 1.54 3319.6 0.48 1.87 399.34 0.37 5.98 439.23 0.26 9.01 574.91 0.17
KF 2.32 379.22 0.49 5.17 134.08 0.33 7.29 44.73 0.22 9.76 14.57 0.15

ArKF 6.95 31.9 0.38 11.06 11.92 0.29 14.11 4.84 0.21 15.37 2.67 0.15

Table 1: Segmental SNR (S.SNR), symmetric Itakura-Saito (sym.I.S) and log likelihood ratio (L.L.R) distortion measure for white, babble,
factory and car noise at various SNR levels using Kalman filtering based noise PSD estimators with different model of the noisy speech power
spectrum

speech PSD dynamics combined with a Kalman filtering based noise
power spectral density estimation technique [6]. Although we ap-
ply the method in the LSA based speech enhancement context, the
method can be useful in other speech enhancement system that re-
quires a noise power spectral estimate, e.g., codebook-driven meth-
ods and subspace based approaches.

We perform objective and subjective evaluation of the proposed
method. As results presented in Section 5 show, the proposed noise
PSD tracking method exhibits good noise tracking capabilities and
evaluation experiments showed preference over the case when there
is no noise tracking and the previously developed method in [6].

Further development of the model is to consider the time-varying
model parameters case. We expect that the introduction of time-
varying model parameters will lead to improved noise PSD estimates
at the cost of higher computational load.
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