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ABSTRACT

This paper studies the speech of three talkers with spastic
dysarthria caused by cerebral palsy. All three subjects share
the symptom of low intelligibility, but causes differ. First, all
subjects tend to reduce or delete word-initial consonants; one
subject deletes all consonants. Second, one subject exhibits a
painstaking stutter. Two algorithms were used to develop au-
tomatic isolated digit recognition systems for these subjects.
HMM-based recognition was successful for two subjects, but
failed for the subject who deletes all consonants. Conversely,
digit recognition experiments assuming a fixed word length
(using SVMs) were successful for two subjects, but failed for
the subject with the stutter.

1. MOTIVATION AND BACKGROUND

Speech and language disorders result from many types of con-
genital or traumatic disorders of the brain, nerves, and mus-
cles [1]. Dysarthria refers to the set of disorders in which
unintelligible or perceptually abnormal speech results from
impaired control of the oral, pharyngeal, or laryngeal articu-
lators. The specific type of speech impairment is often an in-
dication of the neuromotor deficit causing it, therefore speech
language pathologists have developed a system of dysarthria
categories reflecting both genesis and symptoms of the dis-
order [1]. The most common category of dysarthria among
children and young adults is spastic dysarthria [2], typically
characterized by strained phonation, imprecise placement of
the articulators, incomplete consonant closure, and reduced
voice onset time distinctions between voiced and unvoiced
stops.

We are interested in spastic dysarthria because it is the
most common type of severe, chronic speech disorder experi-
enced by students at the University of Illinois, as well as being
one of the most common types of dysarthria generally [2].
Spastic dysarthria is associated with a variety of disabilities
such as, but not limited to, cerebral palsy and traumatic brain
injury [1]. Adults with cerebral palsy are able to perform most
of the tasks required of a college student, including reading,
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listening, and composing text: in our experience, their great-
est handicap is their relative inability to control personal com-
puters. Typing typically requires painstaking selection of in-
dividual keys. Some students are unable to type with their
hands (or find it too tiring), and therefore choose to type us-
ing a head-mounted pointer.

Several studies have demonstrated that adults with dysarthria
are capable of using automatic speech recognition (ASR), and
that in some cases, human-computer interaction using ASR is
faster than interaction using a keyboard [3, 4, 5]. With few
exceptions, the technology used in these studies is speaker -
dependent or speaker-adaptive commercial off-the-shelf speech
recognition technology. Raghavendra et al. [6] compared recog-
nition accuracy of a speaker-adaptive system and a speaker-
dependent system. They found that the speaker-adaptive sys-
tem adapted well to the speech of speakers with mild or mod-
erate dysarthria, but the recognition scores were lower than
for an unimpaired speaker. The subject with severe dysarthria
was able to achieve better performance with the speaker-dependent
system than with the speaker-adaptive system. Dysarthric
speakers may have trouble training a speaker-dependent ASR,
however, because of the great amount of training data re-
quired. Reading a long training passage can be very tiring
for a dysarthric speaker. Doyle et al. [7] asked six dysarthric
speakers and six unimpaired speakers to read a list of 70 words
once in each of five training sessions. They found that the
word recognition accuracy of a speaker-adaptive ASR increased
rapidly after the first training session, then increased more
gradually during training sessions two through five.

This paper studies the speech of three talkers with spas-
tic dysarthria caused by cerebral palsy, and one control sub-
ject, all recorded using an array of seven microphones. All
three subjects share the symptom of low intelligibility, but
the causes of their low intelligibility are subject-dependent.
Based on phonological analysis, we conclude that the speech
samples of these three subjects differ in primarily two re-
spects. First, all subjects tend to reduce or delete word-initial
consonants, resulting in low intelligibility. This tendency is
especially strong in one subject, who tends to delete all con-
sonants in the word; this tendency reduces her intelligibility
relative to her peers. Second, in addition to his tendency to re-
duce word-initial consonants, one subject also exhibits a slow
stutter, perceived by most listeners as an indeterminate num-
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ber of syllables per word.
Two algorithms were used to develop automatic isolated

digit recognition systems for these subjects. Digit recognition
using hidden Markov models (HMMs) was successful for two
subjects, but failed for the subject with the most pronounced
tendency to reduce or delete consonants. Conversely, digit
recognition experiments assuming a fixed word length (using
support vector machine or SVM classifiers) were successful
for two subjects, but failed for the subject with the stutter.
From these results, we tentatively conclude that the dynamic
time warping features of the HMM give it some degree of
robustness against large-scale word-length fluctuations, while
the regularized discriminative error metric used to train the
SVM gives it some degree of robustness against the reduction
and deletion of consonants.

2. DATA ACQUISITION AND CHARACTERIZATION

Data were recorded from three subjects with spastic dysarthria:
two male (M01, M03), and one female (F01). Data were also
recorded from one control subject with no perceptible speech
pathology (M02). Subjects were recorded using an array of
eight microphones and four cameras [8]; of the recorded sig-
nals, seven microphone signals were used in the experiments
reported here. Cameras and microphones were mounted on
top of a computer monitor. One-word prompts were displayed
on the monitor using PowerPoint. Subjects with spastic dysarthria
were unable to easily control a keyboard or mouse, there-
fore an experimenter sat next to the monitor, advancing the
PowerPoint slides after each word spoken. Each slide ad-
vance generated a synchronization tone, dividing the record-
ing into one-word utterances. Four types of speech data were
recorded. Isolated digits (zero through nine) were each recorded
three times. The letters in the international radio alphabet
(alpha, bravo, charlie,. . . ) were each recorded once. Nine-
teen computer command words (line, paragraph, enter, con-
trol, alt, shift,. . . ) were each recorded once. Finally, subjects
read, one word at a time, in order, the words of a phoneti-
cally balanced text passage (the “Grandfather Passage,” 129
words), and 56 phonetically balanced sentences (TIMIT sen-
tences sx3 through sx59). Each subject recorded a total of
541 words, including 395 distinct words. All recordings are
available upon request.

Intelligibility tests were performed using 40 different words
selected from the TIMIT sentences recorded by each talker.
Selection was arbitrary, with the constraints that listeners should
never hear two consecutive words from the same sentence,
and that listeners should never hear the same word from two
different talkers. Words selected in this way were presented
to listeners on a web page. Listeners were asked to listen with
headphones, and to determine which word was being spoken
in each case. The first listener (L1) is the first author of this
paper. Other listeners (L2 and L3) are students of speech and
language technology. Neither student was present when the

Table 1. Three listeners (L1, L2, L3) attempted to understand
isolated words produced by four talkers (F01, M01, M02,
M03); percentage accuracy is reported here.

Listener F01 M01 M02 M03
L1 22.5% 22.5% 90% 30%
L2 17.5% 20% 90% 27.5%
L3 17.5% 15% 97.5% 30%
Average 19.2% 19.2% 92.5% 29.2%

data were first recorded, and neither student has formal train-
ing or extensive experience in the perception or judgment of
dysarthria; it has been shown that listeners with formal train-
ing are usually able to understand dysarthric subjects with
higher accuracy. Results are presented in Table 1. Several
findings are apparent. First, the control subject (M02) is much
more intelligible than the other talkers. Second, inter-listener
agreement is very high. Listener L1 was able to understand
dysarthric subjects with slightly higher accuracy than the other
two listeners, apparently because he had experience listening
to these three dysarthric speakers. For this reason, average in-
telligilibility scores listed in the last row of the table may be a
little too high; a more accurate estimate might be obtained by
averaging the accuracies of listeners L2 and L3.

Listener errors (289 tokens) were phonologically analyzed;
results are shown in Table 2. Three consonant positions were
distinguished: word-initial cluster, word-final cluster, and oth-
ers (word-medial). Consonants in each position could be deleted
(“sport” heard as “port”), inserted (“on” heard as “coin”), or
substituted (“for” heard as “bore”). Substitution errors were
almost equally likely to be manner, place, or manner+place
errors; obstruent voicing errors were less common. Three
other types of errors were tracked. First, vowel substitutions
were tracked (e.g., “and” heard as “end”). Second, the num-
ber of syllables could change (“NS”): 81 of the intended words
were monosyllabic, 40 bisyllabic, 35 trisyllabic, and 4 quadri-
syllabic. Third, the entire word could be deleted (“WD”).
Listener L1 never used the WD rating, but L2 and L3 used
it whenever a word failed to sound like human language – a
relatively frequent occurrence, as many words sounded more
like a squeak or moan than a word. Table 2 shows that, al-
though talkers M01 and F01 had similar intelligibility scores,
the types of errors associated with their productions were very
different. F01 suffered more “word deletions” than any other
talker, meaning that her words were frequently not recog-
nizably intended to be words, because they lacked any dis-
cernable consonants. The speech of M01 exhibited a very
slow and painstakingly enunciated stutter, and this slow stut-
ter sometimes gave listeners the mistaken impression of in-
serted final consonants, or of inserted or deleted syllables.
M03, by contrast, attempted to maintain a reasonable speak-
ing rate, but in the process, frequently deleted word-initial
consonants. Across all speakers, word-initial and word-final
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Table 2. Number of production errors of each type,
out of a total of 289 words in error. DEL=deletion,
INS=insertion, SUB=substitution, NS=erroneous number of
syllables, WD=word deletion (labeler unable to guess the
word).

Initial Cons. Medial Cons.
DEL INS SUB DEL INS SUB

All 37 6 83 16 7 63
F01 8 2 25 2 2 20
M01 3 0 40 11 4 20
M02 2 2 3 0 0 1
M03 24 2 15 3 1 22

Final Cons. Vowel Word
DEL INS SUB SUB NS WD

All 45 32 64 74 29 87
F01 15 5 15 22 5 46
M01 18 17 19 34 14 27
M02 0 2 0 1 0 0
M03 12 8 30 17 10 14

consonant errors were more frequent than word-medial con-
sonant and vowel errors.

3. AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition experiments were conducted
using two recognition paradigms. In the first two experi-
ments, recognition was performed using speaker-dependent
phone-based hidden Markov models (HMM). In the third and
fourth experiments, isolated word classification was performed
using speaker-dependent support vector machines (SVM).

Using the HTK toolkit, speaker-dependent speech recog-
nizers were trained and tested. All systems used a relatively
standard HMM architecture: monophone or clustered triphone
HMMs, three states per phone, mixture Gaussian observa-
tion PDFs, PLP+energy+d+dd spectral observations. Appar-
ently because of the small training corpus, simple models out-
performed complex models: monophone recognizers outper-
formed clustered triphones in all cases, and the optimum num-
ber of Gaussians in the mixture Gaussian PDF was always
less than 10.

In the first experiment, models were tested using a 45-
word vocabulary that included the 19 computer command words,
the 26 letters of the international radio alphabet, and the 10
digits. Test data included two utterances of each digit, and
one utterance of each of the other 35 words. All other data
were used to train monophone HMMs: other data included
TIMIT sentences, the Grandfather passage, and one other ut-
terance of each digit. The second experiment used the same
training data, but test data were restricted to include only the
digits; the recognizer was restricted to select the best option
from a 10-word vocabulary. Results are reported in Table 3.

Table 3. Columns “H” report word recognition accuracy
(WRA, in percent) of HMM-based recognizers if all micro-
phone signals are independently recognized; columns “HV”
report WRA if all microphones vote to determine final system
output. “Word” reports accuracy of one SVM trained to dis-
tinguish isolated digits, treating each microphone signal in-
dependently. “WF” adds outputs of 170 binary word-feature
SVMs. “WFV:” Like WF, but single-microphone recognizers
vote to determine system output.
Vocabulary 45 Words 10 Words (Digits)

Algorithm H HV H HV Word WF WFV

F01 44 55 71 80 97 86 90
M01 42 49 86 95 70 69 70
M02 87 89 99 100 90 90 90
M03 77 80 99 100 97 100 100

In Table 3, columns “H” reports accuracy when every micro-
phone recording is treated as an independent training or test
utterance. Column “HV” implements a simple kind of multi-
microphone combination: each microphone signal is indepen-
dently recognized, and any word recognized by a plurality of
the microphones is taken to be the final system output. This
voting scheme was found to be more accurate, for these data,
than training and testing a one-channel speech recognizer on
the output of a simple delay-and-sum beamformer; more ad-
vanced beamformers were not tested. With a 45-word vocab-
ulary, the “HV” scheme is nearly acceptable for subject M02,
but not for any of the dysarthric subjects. With a 10-word
vocabulary, the “HV” scheme is acceptable for the subjects
M01, M02, and M03, but unacceptable for subject F01.

The third and fourth experiments tested support vector
machines (SVMs) for fixed-length isolated word recognition.
The start and end times of each word were first detected us-
ing seven independent single-channel Gaussian voice activity
detectors (VAD) followed by multi-channel voting. Accuracy
was verified by manually endpointing 20 multi-channel wave-
forms; single-channel VAD often failed, but multi-channel
VAD was found to be accurate within 10ms in all 20 labeled
files. SVM observations were then constructed by concate-
nating 64 consecutive 10ms PLP frames, beginning at the de-
tected word onset time, in order to construct a superframe
observation.

Two types of SVM were trained: 10-ary Word-SVMs, and
binary Word-Feature-SVMs (WF-SVMs; Table 3). Word-
SVMs were trained using two examples of each digit, while
the third example was used for testing. Word-Feature-SVMs
(WF-SVMs) were a bank of 170 different binary-output SVMs,
trained and tested with 17 different binary target functions,
and with 10 different types of superframe observation (differ-
ent lengths, anchored with respect to the word onset, word
offset, or energy peak of the word). Among the 17 target
functions, 7 were trained to classify distinctive features of
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the word-initial consonant (sonorant, fricated, strident), of the
vowel (round, high, diphthong), or of the word-final conso-
nant (nasal vs. non-nasal). The remaining 10 target functions
were binary one-vs-all targets, i.e., each SVM was trained to
distinguish a particular digit from all other digits. Recognizer
output was computed by adding together the real-valued dis-
criminant outputs of the SVMs, with sign permutations de-
pendent on the distinctive features of the words being rec-
ognized, e.g. “one” is [+sonorant,-fricated,-strident,+round,-
high,-diphthong,+nasal]; the word with the highest resulting
score was taken as the recognizer output. Results are reported
in Table 3 in columns “WF” (all microphones scored sepa-
rately) and “WFV” (microphones vote to determine final sys-
tem output).

4. CONCLUSIONS

This paper has demonstrated automatic isolated digit recog-
nition for talkers with very low intelligibility, caused by a va-
riety of symptoms related to spastic dysarthria. HMM-based
digit recognition was successful for two subjects, but failed
for the subject with the most pronounced tendency to reduce
or delete all of the consonants in a word. Conversely, digit
recognition experiments assuming a fixed word length (us-
ing SVM classifiers) were successful for two subjects, but
failed for the subject with a slow, deliberate stutter. From
these results, we tentatively conclude that the dynamic time
warping features of the HMM give it some degree of robust-
ness against large-scale word-length fluctuations, while the
regularized discriminative error metric used to train the SVM
gives it some degree of robustness against the reduction and
deletion of consonants.

A 10-word vocabulary is not sufficient for meaningful human-
computer interface. In future work, we hope to extend this
research to develop working speech recognizers with vocab-
ulary sizes of several dozen words, including computer con-
trol commands and letters of the International Radio Alpha-
bet. We intend to pursue at least two methods to achieve
this goal. First, we intend to ask subjects to record three or
more examples of each word in a larger vocabulary, so that
we can develop whole-word isolated-word speech recogni-
tion models (HMM, SVM, hybrid SVM-HMM, or other mod-
els). Second, we intend to pursue methods that are theoreti-
cally capable of generalizing from a training vocabulary to
a novel test vocabulary, including phone-based HMM recog-
nizers and distinctive-feature-based SVM recognizers.

5. REFERENCES

[1] J Duffy, Motor Speech Disorders, Mosby, St. Louis,
1995.

[2] RJ Love, Childhood Motor Speech Disability, Allyn and
Bacon, Boston, 1992.

[3] H-P. Chang, “Speech input for dysarthric users,” in Meet-
ing of the Acoustical Society of America, Denver, CO,
1993, p. 2aSP7.

[4] N Thomas-Stonell, A-L Kotler, HA Leeper, and
PC Doyle, “Computerized speech recognition: Influence
of intelligibility and perceptual consistency on recogni-
tion,” AAC: Augmentative and Alternative Communica-
tion, vol. 14, no. 1, pp. 51–56, 1998.

[5] K Hux, J Rankin-Erickson, N Manasse, and E Lauritzen,
“Accuracy of three speech recognition systems: Case
study of dysarthric speech,” AAC: Augmentative and Al-
ternative Communication, vol. 16, no. 3, pp. 186–196,
2000.

[6] P Raghavendra, E Rosengren, and S Hunnicutt, “An in-
vestigation of different degrees of dysarthric speech as
input to speaker-adaptive and speaker-dependent recogni-
tion systems,” AAC: Augmentative and Alternative Com-
munication, vol. 17, no. 4, pp. 265–275, 2001.

[7] PC Doyle, HA Leeper, A-L Kotler, N Thomas-Stonell,
C O’Neill, M-C Dylke, and K Rolls, “Dysarthric speech:
a comparison of computerized speechrecognition and lis-
tener intelligibility,” J. Rehabilitation Research and De-
velopment, vol. 34, pp. 309–316, 1997.

[8] B Lee, M Hasegawa-Johnson, C Goudeseune, S Kamdar,
S Borys, M Liu, and T Huang, “Avicar: Audio-visual
speech corpus in a car environment,” in Proc. Internat.
Conf. Spoken Language Processing, 2004.

III  1063


