
MAPPING MULTIMEDIA APPLICATIONS ONTO CONFIGURABLE HARDWARE WITH 
PARAMETERIZED CYCLO-STATIC DATAFLOW GRAPHS

Fiorella Haim*, Mainak Sen*, Dong-Ik Ko*, Shuvra S. Bhattacharyya*, and Wayne Wolf†
*Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, 

University of Maryland, College Park, MD, USA 
†Department of Electrical Engineering, Princeton University, Princeton, NJ, USA

ABSTRACT

This paper develops methods for model-based design and imple-
mentation of image processing applications. We apply our previ-
ously developed meta-modeling technique of homogeneous
parameterized dataflow (HPDF) [9] to the framework of cyclo-
static dataflow (CSDF) [1], and demonstrate this integrated model-
ing methodology through hardware mapping of a gesture recogni-
tion application. We also provide a comparative study between
HPDF/CSDF-based representation of the gesture recognition
application, and a previously developed version based on applying
HPDF in conjunction with conventional synchronous dataflow
(SDF) semantics [9]. 

1.  INTRODUCTION AND BACKGROUND
Real-time multimedia applications are widespread and mod-

eling such applications effectively is critical for efficient imple-
mentation. Applying dataflow concepts in this context can provide
valuable formal properties, such as efficient verification of
bounded memory requirements and deadlock-free operation. Data-
flow modeling also enables a wide variety of coarse-grain analysis
techniques that can greatly improve memory requirements, perfor-
mance estimation, and exploitation of parallelism [10]. Well-
known dataflow modeling techniques, such as synchronous data-
flow (SDF) [6] and cyclo-static dataflow (CSDF) [1] provide for
especially strong analysis and verification; however, these are
static models and cannot handle dynamically-structured applica-
tions, in particular, they cannot handle applications in which data-
flow actors (functional modules) have dynamic data production
and consumption rates. 

Dataflow modeling techniques, such as Boolean-controlled
dataflow [4] and its natural extension, integer-controlled dataflow
[3], have been developed at the other extreme of the modeling
trade-off between expressive power and analysis potential. These
modeling techniques can support arbitrary applications (the mod-
els are Turing complete), but due to this generality, their support is
weak for verification and optimization of implementations.

To provide useful new modeling alternatives in this space of
trade-offs between expressive/analysis capability, a powerful
meta-modeling technique called parameterized dataflow (PDF)
was developed in [2] to handle dynamic applications. PDF is a
hierarchical modeling approach. In PDF, dataflow graph parame-
ters can be configured and reconfigured through associated init
and subinit graphs of the application model, depending on the
flexibility and relative frequencies with which parameters need to
be reconfigured. Innovative techniques for analyzing PDF graphs
and other forms of reconfigurable dataflow are developed in [8].

A related meta-modeling technique, called homogeneous
parameterized (HPDF), was proposed in [9] to model data-depen-
dent application structure with an emphasis on representing data
transfers that are homogeneous across an edge. The homogeneity
requirement in HPDF is in the sense that data transfer across an
edge (production and consumption) must be equal (but not neces-
sarily constant or statically-known) across corresponding invoca-
tions of the source and sink actors. While HPDF is targeted toward

a somewhat narrower range of applications compared to PSDF, it
is even more effective at enabling high-level optimization and ver-
ification when it is applicable. This is due to the provision for
leveraging homogeneity in data transfer rates, while still allowing
some degree of dynamic communication behavior. We discuss
HPDF in more detail in the later sections. 

Our work in this paper demonstrates the meta-modeling
aspect of HPDF through our examination of alternative “base
models” (cyclo-static and synchronous dataflow) to which HPDF
can be applied. Furthermore, our work demonstrates significant
benefits in memory management and performance efficiency that
are attained through the careful mixing and matching of the
orthogonal dataflow modeling methods that we apply. By expos-
ing parallelism and data transfer patterns at a finer granularity in
the model, memory requirements and associated energy consump-
tion for memory accesses can be reduced. However, at the same
time, we can still extract coarse-grain level parallelism effectively,
and thus we can take advantage of pipelined architectures, and
also we can retain the capability for coordinating execution
through low overhead quasi-static schedules.

The remainder of this paper is organized as follows. Section
2 briefly reviews the HPDF meta-model, which was proposed in
[9]. Section 3 develops the integration of HPDF and CSDF, which
we denote as HPDF/CSDF. In addition to maintaining the simplic-
ity and flexibility of the HPDF framework, HPDF/CSDF
expresses more parallelism and helps to express applications at a
finer granularity with respect to inter-actor data transfers. Section
4 describes a gesture recognition algorithm, and reviews a model
for the application using HPDF concepts. Section 4 also analyzes
the application dataflow model to optimize the memory organiza-
tion. Section 5 then looks more deeply at the modeling of input to
the application, as well as the dynamicity of the application, at a
more detailed granularity. This analysis exposes application data-
flow structure more thoroughly, yet in a manner that is concise
enough to be used efficiently at design time. Section 6 explores
scheduling strategies for the integrated HPDF/CSDF modeling
methods developed in this paper. Section 7 presents experimental
results that demonstrate more concretely the efficacy of our tech-
niques. Section 8 presents a summary of the paper along with con-
cluding remarks.

2.  HPDF MODEL

2.1 HPDF modeling
In this section we briefly describe the HPDF modeling

approach proposed earlier in [9]. HPDF is a meta-modeling tech-
nique; it can be applied to different dataflow models of computa-
tion (base models) to significantly enhance their expressive power. 

2.2 HPDF Model Description
An HPDF subsystem is homogeneous in the sense that

actors execute at the same average rate [9]. 
HPDF is a meta modeling technique. Hierarchical actors in

an HPDF model can be refined using any dataflow modeling
semantics that provide a well-defined notion of sub-system itera-
tions. A hierarchical HPDF actor might have SDF, CSDF, PSDF.
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or multidimensional SDF [7] actors as its constituent components. 
As with many other dataflow models, such as SDF and

CSDF, an HPDF edge  can have a non-negative integer delay
 on it. This delay gives the number of initial data samples

(tokens) on the edge.
Interface actors in HPDF can produce and consume arbitrary

amounts of data, while the internal connections must, for fixed
parameter values, obey the constraints imposed by the base model.
An HPDF source actor in general has access to a variable number
of tokens at its inputs, but obeys the semantics of the associated
base model on its output. Similarly, an HPDF sink actor obeys the
semantics of its base model at the input but can produce a variable
number of tokens on its output.

Unlike PSDF, HPDF always executes in bounded memory
whenever the component models execute in bounded memory.

3.  INTEGRATING HPDF AND CSDF
A major contribution of this paper is demonstrating the integration
of CSDF base model semantics into the HPDF meta-modeling
framework. This integration provides simultaneous application of
the bounded memory, dynamic parameterization of HPDF and the
finer granularity, phased decomposition of actor execution in
CSDF. 

Recall that the homogeneity requirement in HPDF is in the
sense that data transfer across an edge (production and consump-
tion) must be equal (but not necessarily constant or statically-
known) across corresponding invocations of the source and sink
actors. In CSDF, a complete invocation of an actor involves execu-
tion of all of the phases in a fundamental period of the actor [1].
Integration of CSDF with HPDF allows the number of phases in a
fundamental period to vary dynamically, and also allows the num-
ber of tokens produced or consumed in a given phase to vary
dynamically. Such dynamic variation must adhere to the general
HPDF constraint, however, that the total number of tokens pro-
duced by a source actor of a given edge in a given invocation
(which, in the case of phased actors, means a given fundamental
period) must equal the total number of tokens consumed by the
sink in its corresponding invocation. Thus, for all positive , the
number of tokens produced by the th complete invocation of a
source actor must equal the number of tokens consumed by the

th complete invocation of the associated sink actor.
For fundamental periods that involve dynamic token trans-

fer, this can be accommodated by employing a special token that
delimits the end of a fundamental period of a source actor. The
source actor produces this special end-of-invocation (EOI) delim-
iter just after the end of each complete invocation. The HPDF
restriction then requires the following.

 Suppose that the sink actor of a dynamically parameterized
HPDF edge  consumes the last token in its th invocation (fun-
damental period of phases) at time . Then just after complet-
ing  more consumption operations after time , the sink
actor will consume an EOI token, and it will not consume any EOI
tokens before that. This pattern must hold for all positive integers

 (i.e., all invocation indices); that is, after each complete sink
invocation, the next EOI token is consumed after exactly 
consumption operations. Furthermore no EOI token should be
consumed during the first invocation  of the sink actor.

The above formulation is useful for precisely specifying
how HPDF applies to dynamic parameterization of CSDF actors.
The formulation can also be used to generate code for quasi-static
schedules, and to verify consistency of HPDF specifications at
run-time (i.e., to detect violations of HPDF behavior as soon as
they occur).

4.  A GESTURE RECOGNITION APPLICATION
In this section, we briefly describe the gesture recognition

algorithm presented in [12], show how to model it with the previ-
ous HPDF model, and then show how to expose high-level appli-
cation structure more effectively with the integration of HPDF and
CSDF developed in Section 3. 

4.1 Description of the algorithm
The gesture recognition algorithm is divided into a low-level

processing algorithm that identifies human body parts in each
frame, and a high-level processing algorithm that recognizes the
gestures. We focus on the low-level processing algorithm, a block
diagram of which is shown in Figure 1. 

Region extraction classifies each pixel of a frame into skin-
tone and non-skin-tone categories. Contour following determines
the contours of the skin-tone regions. The Contour actor operates
in two distinct modes — when it searches for a contour, it scans
each row of the frame until it finds a starting point for a contour,
then it goes to the other mode, where it follows the contour found
before going back to searching for a new contour. Ellipse fitting
finds ellipses to approximate the contours found previously. Graph
matching classifies each ellipse as corresponding to a body part.

The diagram in Figure 1 expresses the application at a frame
level. Here, the Region actor produces one token (one frame) for
Contour to consume, and Contour outputs  contours that it finds
in the input frame, out of which Ellipse successfully fits  ellipses
and discards the rest. Match reads in all the  ellipses before it
identifies body parts from the frame. The values  and  are
input-dependent, and generally vary across actor invocations.

4.2 Fine granularity input modeling
The input to the gesture recognition system comes from a

video camera. In our system, each frame of the video has 384 x
240 pixels and each pixel has 3 components, the luminance Y, and
the chrominances Cr and Cb. We model the input as a cyclo-static
actor having 384 x 240 = 92160 =  phases, where each phase
corresponds to a different pixel. Using an adaptation of dataflow
looped schedule notation (e.g., see [2]), the input (source) actor
can be compactly represented as producing  tokens in its fun-
damental period (1 token on each of  successive phases).

The static part of our system is now modeled as shown in
Figure 2. The model captures now the pixel-level parallelism
present in Region, and also expresses the frame regularity of the
algorithm — i.e., after  phases, we start processing a new frame.
With this regular, fine granularity CSDF representation, we can
explore implementations with different architectures that may
exploit both the pixel and frame parallelism.

In particular, we take advantage of this representation of the
algorithm for our implementation in two aspects. First, we observe
that the application can be pipelined into five blocks, each one pro-
cessing a different frame. The second improvement is in the mem-
ory organization. Edges in a dataflow graph can be implemented
as FIFO queues, but when dealing with images these buffers may
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Figure 1. Block diagram of the gesture recognition algorithm.
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Figure 2. Model of the static part of the system
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need to be larger than the internal memory available to them. In
that case, external memory would be needed. Accessing external
memory is power- and time-consuming, so when several banks are
available, organizing the accesses carefully can reduce energy con-
sumption significantly and improve the system performance in
terms of throughput. Thus, the best memory organization scheme
is the one that minimizes the number of accesses to it from an
energy consumption point of view and minimizes the total number
of non-overlapping accesses from a performance point of view. 

We notice that for a sequential frame execution of the algo-
rithm (i.e., without pipelining) the best possible memory organiza-
tion for performance is to use all the possible memory bandwidth.
This configuration should have minimum number of non-overlap-
ping memory reads, thus optimizing the throughput. Interestingly,
this configuration consumes the least energy as well. 

If we implement a pipelined architecture, however, using the
whole bandwidth is not the best option anymore. The memory
management can be better adapted in this case if we swap banks so
that an actor reads from a bank  data from frame , while the
preceding actor through edge  is writing in another bank data
from frame , where  and  are “swapping banks” associ-
ated with edge . In this way, an efficient memory organization
consists of using half the banks available for each edge. An exam-
ple with four memory banks is illustrated in Figure 3. In Section 7,
we show some results obtained using this method with a multime-
dia FPGA board from Xilinx.

5.  MODELING DYNAMICITY
In Figure 2, Contour needs to wait until the whole frame is

available to start executing. Although this is true for the worst
case, most of the times Contour can fire prior to having the whole
frame. In order to model this, we divide the behavior of Contour
into two phases, as shown in Figure 4: the first one scans the image
looking for a contour and continues until it finds the starting point
of one, thus consuming  pixels, without producing any output
tokens; the second phase follows the contour and finds all the con-
tours that are overlapping with each other. Now instead of process-
ing the whole image, it will only process the subimage that goes
from where a contour starts until all overlapping contours present
are completed, thus consuming  pixels. The output of this phase
consists of  tokens. Each one of these output tokens is made up
of a list of pixels belonging to a contour.

The HPDF condition as developed in Section 3 is respected
here since no matter how the processing of Contour gets broken
down into phases (based on the actual input image), the total num-
ber of pixels consumed in a frame by Contour equals the number
of tokens produced for that frame by Region. That is,

. (1)

We model the input edge of Ellipse as a dynamically param-

eterized CSDF edge, capturing the dynamicity of Contour’s pro-
duction in the number of phases of Ellipse. The output of Ellipse is
a set of parameters describing the ellipse whenever it can fit one to
the contour. The Match actor has to wait to have all the  ellipses
available before it can execute. It is easy to verify that the associ-
ated edges remain homogeneous in the sense of HPDF: an invoca-
tion of Contour will produce  tokens, based on the contours
found in the current frame, while Ellipse will consume one token
in each of its  phases (dynamically parameterized number of
phases configured based on the pattern of EOI tokens on the edge).
Similarly, Ellipse outputs tokens throughout  phases such that
the sum of tokens over the phases is , which is the number of
tokens consumed by Match.

6.  SCHEDULING
We can have different scheduling strategies depending on

the implementation constraints that are most important; this is an
advantage of dataflow modeling in general, and our development
of HPDF enhances this advantage for the targeted class of applica-
tions. If data is passed between actors as vectors of different
lengths, so that a static number of vector tokens whose lengths are
dynamic are exchanged between a source and a sink, then we can
have a very simple scheduler in place. In the HPDF/SDF model, if
the edges  and  receive and
deliver one vector token each of length  and  respectively, then
a valid schedule of the graph would be

. (2)
We can apply this concept of variable length tokens to find

the schedule for a general HPDF graph. However if more granular-
ity is expressed in the model, as we have done by integrating
HPDF and CSDF, and if we want to exploit this finer granularity
specification, we need to have a parameterized schedule, and to
exchange data in a more fine-grained way. For our application, if it
is modeled as in Figure 2 and Figure 4, a valid schedule would be:

. (3)
In this schedule, the video input fires  times to provide the

 pixels of a frame, while Region also fires  times, once per
frame pixel. Contour fires  times, where  is the number of
non-overlapping contours found in the current frame, since in its
odd phases it searches for contours and in its even phases it fol-
lows the detected contours, and this happens  times in each
frame. Ellipse fires  times, once for each contour and Match fires
only once per frame. However, this basic schedule can be
improved by grouping executions of Video and Region phases
using the following modified schedule:

. (4)
Efficient quasi-static schedules of this form are enabled by

the integrated HPDF/CSDF methodology that we have developed
in this paper. Here, detection of EOI tokens, as described in Sec-
tion 3, can be used to control the loops whose iteration counts are
based on dynamically parameterized CSDF structures. 
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Figure 3. Example of swapping banks
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7.  EXPERIMENTAL RESULTS
For the gesture recognition application, we used the derived

HPDF/CSDF model to determine an effective memory organiza-
tion for our target platform, which is a Xilinx Multimedia and
Microblaze Development Board. This board contains a Xilinx Vir-
tex-2 field programmable gate array (FPGA) device. It also con-
tains five integrated circuits that provide static RAM of size
512Kx32 bits with independent data, address, and control busses,
and byte addressing capabilities. According to the memory
datasheet, each bank consumes a maximum of 1.254 W when
selected and 0.099 W otherwise. As per our implementation, write
and read cycles take two clock periods. Assuming operation at the
maximum memory frequency (133 MHz), we can calculate , the
energy needed to write and read the images as follows.

, (5)

where  is the power consumed by the memory when selected, 
is the total number of memory cycles and  is the maximum
frequency. This analysis assumes that Contour only reads each
memory location once, so internal buffers are available when
needed. 

In Table 1, we compare three cases with frames sized at
384x240 pixels, the last column shows the minimum memory size
needed for each case for 5 independent banks with 32-bit words.
The first case considers an effective memory organization that can
be achieved from the information given by the HPDF/SDF model,
considering a single frame. In this case, Region needs to read the
frame from memory and then write its output to memory from
where Contour will read it next. An appropriate configuration is
achieved by storing the three components of the frame in the first
22.5K addresses of three memory banks and storing Region’s out-
put in 22.5K addresses of the other two memory banks. The sec-
ond case is an efficient memory organization for a single frame
that exploits the pixel-level parallelism shown with the precise
modeling of the input stream (Figure 2). Region does not need to
have a whole frame stored in memory anymore, and a more effec-
tive memory configuration is achieved when we write Region’s
output in the first 9216 addresses of the 5 banks. 

Case 3 considers a stream of frames, extracting the frame
level parallelism represented in the HPDF/CSDF model, where we
swap between two pairs of banks to write Region’s output in the
first 23040 addresses in each case. In this case, at the same time
that Contour is reading Region’s output for frame , Region is
writing its output for frame .(Figure 3). Consequently, the
buffer usage gets reduced from 184Kb between Region and Con-
tour to 3 bytes while the other edges still have the same worst case
buffer size as the previous representation [9]. This worst case
arises when there is only one body part filling the whole image.
However, in a typical scenario, the buffer sizes will be reduced sig-
nificantly compared to the HPDF/SDF model of [9]

8.  CONCLUSIONS
We have demonstrated the meta-modeling capabilities of

HPDF, examining both SDF and CSDF as base models to which
HPDF can be applied for alternative realizations of a gesture rec-
ognition application. Our HPDF/CSDF-based representation
exposes pixel-level parallelism, enabling optimizations in buffer
size and energy consumption. Furthermore, frame level parallel-
ism can still be extracted from the model, providing information to
generate an efficient schedule and explore pipelining options. 

Useful directions for further work include hardware synthe-
sis from HPDF/CSDF specifications; exploring the relationship to
Compaan, which is a synthesis tool for MATLAB that uses inter-
nal representations having close relationships to dataflow graphs,
and more recently, to restricted forms of dynamic dataflow [11];
integration into the dataflow interchange format (DIF), which pro-
vides a language, a tool development infrastructure, and software
synthesis capabilities for working within and across different data-
flow modeling techniques and design environments for DSP [5].
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Table 1. Results of optimized memory organization in differ-
ent scenarios.

Scenario
Total # of 

access cycles 
/ frame

# of non-
overlapping 

cycles / frame

Energy / 
frame 
(mJ)

Memory 
required

1 frame w/R 161280 69120 3.03 22.5 K

1 frame 92160 18432 1.73 9 K

Stream 92160 11520
(latency: 23040)

1.76 22.5 K
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