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ABSTRACT 

A speech recognition algorithm is implemented on a 

Xilinx’s MicroBlaze softcore based FPGA platform. When 

compared to programmable DSP or RISC processor based 

design, this approach not only can support large vocabulary 

speech recognition but also leads to a multi-channel system 

implementation utilizing an off-the-shelf FPGA device. The 

design space is explored in a few ways; firstly by 

configuring the datapath of the MicroBlaze softcore and 

secondly by adding a custom hardware block to speed up 

the emission probability computation. The hardware block 

designed for emission probability computation incorporates 

the BRAM where the reference data is accessed directly 

thereby reduces the overhead of transferring data from the 

processor to the hardware block. 

1. INTRODUCTION 

An FPGA based design has been acquiring a lot of 

attentions in the domain of hardware design, but not that of 

software based embedded system design [1]. As a result, 

most of the speech recognition algorithms have been 

implemented on programmable DSP (Digital Signal 

Processor) or RISC processor based architectures [2][3]. 

However, the pure software based approach is not efficient 

for high performance speech recognition applications 

mainly because it requires an excessive number of 

instruction cycles.  

In this paper, the speech recognition algorithm is 

implemented on an FPGA platform containing a softcore, 

which supports program, especially C language, based 

application development. Obviously, it is needed to add 

special functional blocks for achieving the speed up close to 

or even beyond the capability of pure software based 

solution. 

The softcore based solution for FPGA has been 

emerging recently, and Xilinx MicroBlaze and Altera Nios 

are of the popular examples [4]. The softcore based solution 

has several advantages over a pure hardware based design 

as well as the hard processor based design. Firstly, it 

supports a program based application development. Thus, a 

complex application such as speech recognition can be 

implemented quite quickly. Secondly, it is possible to equip 

special datapath for assembling a high performance 

instruction. Although this feature has yet some limitations, it 

is not difficult to add a hardware multiplier or even a 

floating-point unit to the softcore processor.  Thirdly, the 

softcore features does not require any silicon area when it is 

not needed, while the hard processor based approach always 

consumes the area. It is also possible to implement multiple 

processors as long as the chip capacity is allowed. Finally, it 

is natural to add a hardware block for accelerating the 

execution of certain functional blocks. As a result, this 

approach seems very adequate not only for early time-to-

market but also for high performance system design beyond 

the capability of a program based system design [4].  

This paper is organized in the following manner. Section 

2 briefly discusses the Xilinx’s MicroBlaze softcore 

processor and the speech recognition algorithm. In section 3, 

the effects of configuring a datapath for feature extraction 

are explained. Section 4 gives the design and performance 

evaluation of the hardware based emission probability 

computation block. Finally in section 5, concluding remarks 

are made.  

2. OVERVIEW OF SYSTEM AND ALGORITHM 

Xilinx’s ML402 evaluation board which combines 

XC4VSX35 of Virtex-4 FPGA family, provides an 

environment for designing a reconfigurable system based on 

the MicroBlaze softcore processor.  

2.1 MicroBlaze Softcore Processor 

MicroBlaze is a softcore processor based on a traditional 

32-bit Harvard RISC architecture. Unlike any other off-the-

shelf hard processors which are actually implemented in the 
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FPGA at a transistor level, the soft core is an IP block 

written in HDL and is implemented in the free resources of 

an FPGA [5]. Therefore it is configurable by choosing the 

components that would be included in the system. 

According to the type of applications, MicroBlaze processor 

can be configured in several ways to save power or area. 

MicroBlaze processor provides four bus connections, 

namely the Local Memory Bus (LMB), the On-chip 

Peripheral Bus (OPB), the Fast Simplex Link (FSL) and the 

Xilinx Cachelink (XCL). The LMB is a dedicated bus for 

MicroBlaze and on-chip block RAM connection. The OPB 

is a CoreConnect IBM standard bus and gives the capability 

to connect variety of available IP blocks and peripherals. 

The FSL has a FIFO-based interface and it provides a 

connection between a custom hardware to assist particular 

application [6] [7]. Lastly the XCL interface provides a link 

between MicroBlaze processor and data and instruction 

caches.  

2.2 Speech Recognition 

Speech recognizer is a widely used application especially in 

the field of embedded systems such as PDA’s and mobile 

phones. Due to a heavy arithmetic computation nature of the 

speech recognition, it has been implemented on a DSP or 

RISC-DSP systems. However, it takes a lot of consideration 

to implement the speech recognition using a low-cost 

embedded RISC CPU, especially in reducing arithmetic 

operations due to the lack of hardware support. A speaker 

independent continuous speech recognition employing 

context dependent HMM is used for the implementation. 

The recognition process mainly consists of three parts, 

feature extraction, emission probability computation and 

Viterbi beam search [8]. 

At the feature extraction stage, a 13th–order MFCC (Mel 

Frequency Cepstral Coefficients) and corresponding delta 

and acceleration coefficients are computed for each frame, 

which constitute a 39-dimensional feature vector. The most 

computation intensive part for MFCC computation is a 512-

point FFT, which requires many add and multiply 

operations.   

The emission probability computation employs the 

phoneme model that is only affected by its neighbor 

phonemes within the word boundary. Each phoneme model 

consists of three states and each state has transition and 

output probability densities modeled by the Gaussian 

mixture. The models were trained with TIMIT corpus, and 

parameter tying was applied in the training phase [9]. The 

total number of Gaussian mixtures in the trained models 

was about 4000. 

In the emission probability computation stage, 

evaluation of the Gaussian mixture using the trained and 

feature vectors. The Gaussian log-probability for mixture n

is given by, 
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where O represents the feature vector and ,  are mean and 

variance of the mixture n respectively. The emission 

probability of the state with mixture N is given by, 
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In the Viterbi search, the beam pruning technique is 

adopted to reduce the search space so that the number of 

emission probability computation is reduced. The states 

with a low accumulated log-likelihood are pruned and are 

not used for the next emission probability computation. 

Although the pruning saves many operations, especially for 

a large size recognition task, it can lower the recognition 

accuracy. 

Fig. 1 shows the cycle requirements for 100, 200, 400 

and 800 word tasks simulated on an ARM7 RISC processor. 
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Figure 1. MIPS requirements for various recognitions tasks 

3. DATAPATH SELECTION FOR FEATURE 

EXTRACTION 

As it is shown in Fig. 1, the computation requirement for 

the feature extraction is constant, around 10 MIPS (Million 

Instructions Per Second) regardless of the recognition word 

size. The feature extraction part is implemented on a 

platform based on the MicroBlaze processor. Note that the 

basic MicroBlaze architecture does not contain a hardware 

multiplier, but it can accommodate a hardware multiplier by 

a simple configuration. The execution time of handling a 

single frame of input speech sample was measured. To show 

the effect of additional hardware block, the execution time 

is measured for the case of MicroBlaze with a hardware 

multiplier support and the case with the absence of 

hardware multiplier. Also the execution time on 

ARM7TDMI is measured for the general comparison 

purpose. Fig. 2 shows the execution time of handling a 

single frame of input speech sample on ARM7TDMI, 

MicroBlaze without hardware multiplier support and 
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MicroBlaze with an additional hardware multiplier. The 

ARM7TDMI is operating at 60 MHz and the MicroBlaze is 

working at 100 MHz.   

Figure 2. The execution time of the feature extraction part 

of speech recognition 

As it can be seen from the figure, ARM7TDMI and the 

MicroBlaze system with a hardware multiplier support give 

nearly equal performance. The execution times were 

measure to be 1280.9us and 1307.183us for ARM7TDMI 

and MicroBlaze with hardware multiplier respectively. Note 

that the instruction efficiency of MicroBlaze is a little bit 

poorer than the ARM7TDMI because of the architectural 

restriction and compiler differences.  

Also Fig 2 shows that there is quite a good chance of 

performance improvement just with the addition of a 

hardware multiplier. The execution time for MicroBlaze 

without the hardware multiplier support was measured to be 

3605.3us. The addition of hardware multiplier brought a 

speedup of about 180%. With the absence of hardware 

multiplier, MicroBlaze computes multiplication with 

software library routines which is rather time consuming. 

Since the additional hardware resource for adding hardware 

multiplier is not very demanding as will be discussed later, 

it is logical to add a hardware multiplier in the system 

design.  

4. HARDWARE BLOCK FOR EMISSION 

PROBABILITY COMPUTAITON 

As shown in Fig. 1, the emission probability computation is 

increasing rapidly as the input task set increases. Thus, it is 

inevitable for a high performance system design to add a 

hardware block for a speedup. Note that the involved 

arithmetic operations for the emission probability 

computation as shown in Eq. (1) is relatively simple and can 

easily be implemented using pipelined hardware arithmetic 

units.  

The custom hardware developed for computing the 

Gaussian log-probability for mixture n is illustrated in Fig. 3. 

This hardware block contains the datapath for the Gaussian 

log-probability computation. In addition, the feature vector 

storage is implemented. The feature vector is transferred to 

the hardware units for each frame once, so it does not 

consume many cycles. Note that the amount of the model 

data for triphone based speech recognition adopted in this 

paper is between 160 KB and 447 KB according to the size 

of recognition task. Thus, in this experiment the model data 

is stored at the external DDR. However, if the model data is 

stored at the internal memory, the overall design becomes 

simpler and the performance would be better.  

In the implementation of 50 words task without any 

hardware block, the number of the core cycles for 

computing one model vector with the feature vector, which 

corresponds to the computation of Eq. (1) is 2920 clock 

cycles. With the architecture shown in Fig. 3, it is found that 

the core cycle is not much reduced and becomes 1349 clock 

cycles. Note that the delay of delivering the model data 

through the MicroBlaze and FSL is the major bottleneck for 

this architecture. 

Figure 3. Hardware block for emission probability 

computation 

The architecture shown in Fig. 4 is designed to load the 

model vectors directly from the internal BRAMs. Note that 

the access of model vector needs 39 32-bit data read cycles, 

but the access can utilize the fast read mode of the BRAM. 

The total required BRAM size to hold necessary parameters 

is about 160 KB. 

Figure 4. Hardware accelerator with internal BRAM 

In addition, the data load can overlap with the computation. 

As a result, the number of the core cycles is reduced to 47 
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clock cycles. In this implementation, BRAM is connected to 

32bit bus and needs 1 clock cycle in the fast read mode. 

The above implementation results with the hardware 

block in Fig. 4 shows that the overall system becomes 

memory bound architecture. Thus, the performance can be 

improved much if the model data is stored in the internal 

BRAM. Fig. 5 shows the total execution cycles needed for 

the recognition for 50 words task. As it can be seen from the 

figure, the execution cycles for the emission probability 

computation has been reduced about 6.5 times which 

resulted in about 2 times reduction in the total execution 

cycles when the hardware accelerator with BRAM is 

adopted. As it was shown in the Fig. 1, the overhead of 

emission probability computation increases as the size of 

recognition task become larger. Therefore the effect of 

adopting the proposed architecture would yield further 

improvement. 

Figure 5. Total execution cycles of recognition on various 

implementations 

   The hardware resources for the implementation are 

summarized in Table 1. The results show that the increased 

hardware resource requirements are not excessive when 

compared to the basic MicroBlaze core. Note that the 

XC4VSX35 device, which is one of the Virtex-4 SX family, 

contains 15,360 slices, 30,720 slice FFs, 30,720 4-input 

LUTs, and 192 DSP-48 blocks. Thus, the hardware 

occupation ratio of each block is less than 10% of the 

XC4VSX35 device as shown at the parentheses in Table 1.   

Table 1. Hardware resources.

 MicroBlaze 

w.o. MUL 

MicroBlaze 

with MUL 

Hardware 

Block

Slices 1117 (7%) 1130 (7%) 469 (3%)

Slice Flip Flops 725 (2%) 744 (2%) 778 (2%)

4 input LUTs. 1405 (4%) 1410 (4%) 169 (5%)

DSP-48s 0 (0%) 3 (1%) 2 (1%)

5. CONCLUDING REMARKS 

This paper evaluated the design space of implementing 

speech recognition algorithm on the MicroBlaze softcore 

processor based FPGA. The computational requirements for 

speech recognition for different word size are analyzed, and 

optimized architecture design for real-time implementation 

is conducted. Especially, the hardware for accelerating the 

emission probability computation is designed, where it is 

shown the algorithm needs direct memory accesses. 

The implementation results show that the FPGA softcore 

based system is not only programmable and flexible but also 

can execute large vocabulary speech recognition in real time. 

The synthesized results also show that more than 10 

channels of speech recognition circuit can be implemented 

on an off-the-shelf FPGA device.  
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