
DESIGN AND IMPLEMENTATION OF SPEECH RECOGNITION

ON A SOFTCORE BASED FPGA

Hyunjin Lim, Kisun You and Wonyong Sung

School of Electrical Engineering

Seoul National University

Kwanak-gu, Seoul 151-742 Korea

Phone: +82-2-880-9372, Fax: +82-2-882-4656

Email: {hjlim, ksyou, wysung}@dsp.snu.ac.kr

ABSTRACT

A speech recognition algorithm is implemented on a

Xilinx’s MicroBlaze softcore based FPGA platform. When

compared to programmable DSP or RISC processor based

design, this approach not only can support large vocabulary

speech recognition but also leads to a multi-channel system

implementation utilizing an off-the-shelf FPGA device. The

design space is explored in a few ways; firstly by

configuring the datapath of the MicroBlaze softcore and

secondly by adding a custom hardware block to speed up

the emission probability computation. The hardware block

designed for emission probability computation incorporates

the BRAM where the reference data is accessed directly

thereby reduces the overhead of transferring data from the

processor to the hardware block.

1. INTRODUCTION

An FPGA based design has been acquiring a lot of

attentions in the domain of hardware design, but not that of

software based embedded system design [1]. As a result,

most of the speech recognition algorithms have been

implemented on programmable DSP (Digital Signal

Processor) or RISC processor based architectures [2][3].

However, the pure software based approach is not efficient

for high performance speech recognition applications

mainly because it requires an excessive number of

instruction cycles.

In this paper, the speech recognition algorithm is

implemented on an FPGA platform containing a softcore,

which supports program, especially C language, based

application development. Obviously, it is needed to add

special functional blocks for achieving the speed up close to

or even beyond the capability of pure software based

solution.

The softcore based solution for FPGA has been

emerging recently, and Xilinx MicroBlaze and Altera Nios

are of the popular examples [4]. The softcore based solution

has several advantages over a pure hardware based design

as well as the hard processor based design. Firstly, it

supports a program based application development. Thus, a

complex application such as speech recognition can be

implemented quite quickly. Secondly, it is possible to equip

special datapath for assembling a high performance

instruction. Although this feature has yet some limitations, it

is not difficult to add a hardware multiplier or even a

floating-point unit to the softcore processor. Thirdly, the

softcore features does not require any silicon area when it is

not needed, while the hard processor based approach always

consumes the area. It is also possible to implement multiple

processors as long as the chip capacity is allowed. Finally, it

is natural to add a hardware block for accelerating the

execution of certain functional blocks. As a result, this

approach seems very adequate not only for early time-to-

market but also for high performance system design beyond

the capability of a program based system design [4].

This paper is organized in the following manner. Section

2 briefly discusses the Xilinx’s MicroBlaze softcore

processor and the speech recognition algorithm. In section 3,

the effects of configuring a datapath for feature extraction

are explained. Section 4 gives the design and performance

evaluation of the hardware based emission probability

computation block. Finally in section 5, concluding remarks

are made.

2. OVERVIEW OF SYSTEM AND ALGORITHM

Xilinx’s ML402 evaluation board which combines

XC4VSX35 of Virtex-4 FPGA family, provides an

environment for designing a reconfigurable system based on

the MicroBlaze softcore processor.

2.1 MicroBlaze Softcore Processor

MicroBlaze is a softcore processor based on a traditional

32-bit Harvard RISC architecture. Unlike any other off-the-

shelf hard processors which are actually implemented in the

III ­ 10441­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

FPGA at a transistor level, the soft core is an IP block

written in HDL and is implemented in the free resources of

an FPGA [5]. Therefore it is configurable by choosing the

components that would be included in the system.

According to the type of applications, MicroBlaze processor

can be configured in several ways to save power or area.

MicroBlaze processor provides four bus connections,

namely the Local Memory Bus (LMB), the On-chip

Peripheral Bus (OPB), the Fast Simplex Link (FSL) and the

Xilinx Cachelink (XCL). The LMB is a dedicated bus for

MicroBlaze and on-chip block RAM connection. The OPB

is a CoreConnect IBM standard bus and gives the capability

to connect variety of available IP blocks and peripherals.

The FSL has a FIFO-based interface and it provides a

connection between a custom hardware to assist particular

application [6] [7]. Lastly the XCL interface provides a link

between MicroBlaze processor and data and instruction

caches.

2.2 Speech Recognition

Speech recognizer is a widely used application especially in

the field of embedded systems such as PDA’s and mobile

phones. Due to a heavy arithmetic computation nature of the

speech recognition, it has been implemented on a DSP or

RISC-DSP systems. However, it takes a lot of consideration

to implement the speech recognition using a low-cost

embedded RISC CPU, especially in reducing arithmetic

operations due to the lack of hardware support. A speaker

independent continuous speech recognition employing

context dependent HMM is used for the implementation.

The recognition process mainly consists of three parts,

feature extraction, emission probability computation and

Viterbi beam search [8].

At the feature extraction stage, a 13th–order MFCC (Mel

Frequency Cepstral Coefficients) and corresponding delta

and acceleration coefficients are computed for each frame,

which constitute a 39-dimensional feature vector. The most

computation intensive part for MFCC computation is a 512-

point FFT, which requires many add and multiply

operations.

The emission probability computation employs the

phoneme model that is only affected by its neighbor

phonemes within the word boundary. Each phoneme model

consists of three states and each state has transition and

output probability densities modeled by the Gaussian

mixture. The models were trained with TIMIT corpus, and

parameter tying was applied in the training phase [9]. The

total number of Gaussian mixtures in the trained models

was about 4000.

In the emission probability computation stage,

evaluation of the Gaussian mixture using the trained and

feature vectors. The Gaussian log-probability for mixture n

is given by,

39

1

2
2

)())(log(
k

n

k

n

ktkt

n OKOb , (1)

where O represents the feature vector and , are mean and

variance of the mixture n respectively. The emission

probability of the state with mixture N is given by,

))()()(log(21

t

N

tt ObObOb . (2)

In the Viterbi search, the beam pruning technique is

adopted to reduce the search space so that the number of

emission probability computation is reduced. The states

with a low accumulated log-likelihood are pruned and are

not used for the next emission probability computation.

Although the pruning saves many operations, especially for

a large size recognition task, it can lower the recognition

accuracy.

Fig. 1 shows the cycle requirements for 100, 200, 400

and 800 word tasks simulated on an ARM7 RISC processor.

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

1,400,000,000

1,600,000,000

WORD/100 WORD/200 WORD/400 WORD/800

C
y
cl
e
s

Beam pruning

Emission prob. Comp.

etc

Feature extraction

Figure 1. MIPS requirements for various recognitions tasks

3. DATAPATH SELECTION FOR FEATURE

EXTRACTION

As it is shown in Fig. 1, the computation requirement for

the feature extraction is constant, around 10 MIPS (Million

Instructions Per Second) regardless of the recognition word

size. The feature extraction part is implemented on a

platform based on the MicroBlaze processor. Note that the

basic MicroBlaze architecture does not contain a hardware

multiplier, but it can accommodate a hardware multiplier by

a simple configuration. The execution time of handling a

single frame of input speech sample was measured. To show

the effect of additional hardware block, the execution time

is measured for the case of MicroBlaze with a hardware

multiplier support and the case with the absence of

hardware multiplier. Also the execution time on

ARM7TDMI is measured for the general comparison

purpose. Fig. 2 shows the execution time of handling a

single frame of input speech sample on ARM7TDMI,

MicroBlaze without hardware multiplier support and

III ­ 1045

MicroBlaze with an additional hardware multiplier. The

ARM7TDMI is operating at 60 MHz and the MicroBlaze is

working at 100 MHz.

Figure 2. The execution time of the feature extraction part

of speech recognition

As it can be seen from the figure, ARM7TDMI and the

MicroBlaze system with a hardware multiplier support give

nearly equal performance. The execution times were

measure to be 1280.9us and 1307.183us for ARM7TDMI

and MicroBlaze with hardware multiplier respectively. Note

that the instruction efficiency of MicroBlaze is a little bit

poorer than the ARM7TDMI because of the architectural

restriction and compiler differences.

Also Fig 2 shows that there is quite a good chance of

performance improvement just with the addition of a

hardware multiplier. The execution time for MicroBlaze

without the hardware multiplier support was measured to be

3605.3us. The addition of hardware multiplier brought a

speedup of about 180%. With the absence of hardware

multiplier, MicroBlaze computes multiplication with

software library routines which is rather time consuming.

Since the additional hardware resource for adding hardware

multiplier is not very demanding as will be discussed later,

it is logical to add a hardware multiplier in the system

design.

4. HARDWARE BLOCK FOR EMISSION

PROBABILITY COMPUTAITON

As shown in Fig. 1, the emission probability computation is

increasing rapidly as the input task set increases. Thus, it is

inevitable for a high performance system design to add a

hardware block for a speedup. Note that the involved

arithmetic operations for the emission probability

computation as shown in Eq. (1) is relatively simple and can

easily be implemented using pipelined hardware arithmetic

units.

The custom hardware developed for computing the

Gaussian log-probability for mixture n is illustrated in Fig. 3.

This hardware block contains the datapath for the Gaussian

log-probability computation. In addition, the feature vector

storage is implemented. The feature vector is transferred to

the hardware units for each frame once, so it does not

consume many cycles. Note that the amount of the model

data for triphone based speech recognition adopted in this

paper is between 160 KB and 447 KB according to the size

of recognition task. Thus, in this experiment the model data

is stored at the external DDR. However, if the model data is

stored at the internal memory, the overall design becomes

simpler and the performance would be better.

In the implementation of 50 words task without any

hardware block, the number of the core cycles for

computing one model vector with the feature vector, which

corresponds to the computation of Eq. (1) is 2920 clock

cycles. With the architecture shown in Fig. 3, it is found that

the core cycle is not much reduced and becomes 1349 clock

cycles. Note that the delay of delivering the model data

through the MicroBlaze and FSL is the major bottleneck for

this architecture.

Figure 3. Hardware block for emission probability

computation

The architecture shown in Fig. 4 is designed to load the

model vectors directly from the internal BRAMs. Note that

the access of model vector needs 39 32-bit data read cycles,

but the access can utilize the fast read mode of the BRAM.

The total required BRAM size to hold necessary parameters

is about 160 KB.

Figure 4. Hardware accelerator with internal BRAM

In addition, the data load can overlap with the computation.

As a result, the number of the core cycles is reduced to 47

III ­ 1046

clock cycles. In this implementation, BRAM is connected to

32bit bus and needs 1 clock cycle in the fast read mode.

The above implementation results with the hardware

block in Fig. 4 shows that the overall system becomes

memory bound architecture. Thus, the performance can be

improved much if the model data is stored in the internal

BRAM. Fig. 5 shows the total execution cycles needed for

the recognition for 50 words task. As it can be seen from the

figure, the execution cycles for the emission probability

computation has been reduced about 6.5 times which

resulted in about 2 times reduction in the total execution

cycles when the hardware accelerator with BRAM is

adopted. As it was shown in the Fig. 1, the overhead of

emission probability computation increases as the size of

recognition task become larger. Therefore the effect of

adopting the proposed architecture would yield further

improvement.

Figure 5. Total execution cycles of recognition on various

implementations

 The hardware resources for the implementation are

summarized in Table 1. The results show that the increased

hardware resource requirements are not excessive when

compared to the basic MicroBlaze core. Note that the

XC4VSX35 device, which is one of the Virtex-4 SX family,

contains 15,360 slices, 30,720 slice FFs, 30,720 4-input

LUTs, and 192 DSP-48 blocks. Thus, the hardware

occupation ratio of each block is less than 10% of the

XC4VSX35 device as shown at the parentheses in Table 1.

Table 1. Hardware resources.

 MicroBlaze

w.o. MUL

MicroBlaze

with MUL

Hardware

Block

Slices 1117 (7%) 1130 (7%) 469 (3%)

Slice Flip Flops 725 (2%) 744 (2%) 778 (2%)

4 input LUTs. 1405 (4%) 1410 (4%) 169 (5%)

DSP-48s 0 (0%) 3 (1%) 2 (1%)

5. CONCLUDING REMARKS

This paper evaluated the design space of implementing

speech recognition algorithm on the MicroBlaze softcore

processor based FPGA. The computational requirements for

speech recognition for different word size are analyzed, and

optimized architecture design for real-time implementation

is conducted. Especially, the hardware for accelerating the

emission probability computation is designed, where it is

shown the algorithm needs direct memory accesses.

The implementation results show that the FPGA softcore

based system is not only programmable and flexible but also

can execute large vocabulary speech recognition in real time.

The synthesized results also show that more than 10

channels of speech recognition circuit can be implemented

on an off-the-shelf FPGA device.

6. ACKNOWLEDGMENTS

This study was supported by the Brain Korea 21 Project of

Korean Ministry of Education in 2005.

7. REFERENCES

[1] Xilinx: “Virtex-4 Family Overview,”

http://direct.xilinx.com/bvdocs/publications/ds112.pdf.

[2] Y. Gong and Y.-H. Kao, “Implementing a high accuracy

speaker-independent continuous speech recognizer on a fixed-

point DSP,” in Proc. ICASSP, pp. 3686 – 3689, 2000,.

[3] S. Ryu, Y. Lee and W. Sung, “Implementation of Speech

Recognition Algorithm for A 32-bit CPU Based Portable Device,”

in Proc. ICCE, pp. 240-241, 2002.

[4] R. Lysecky and F. Vahid, “A study of the speedups and

competitiveness of FPGA soft processor cores using dynamic

hardware/software partitioning,” in Proc. DATE, pp. 18-23, 2005.

[5] Xilinx UG081: “MicroBlaze Processor Reference Guide,”

http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf.

[6] M. Ouellette and D. Connors, “Analysis of Hardware

Acceleration in Reconfigurable Embedded System,” in Proc.

IPDPS, pp. 168a-168a, 2005.

[7] Xilinx: XAPP529: “Connecting Customized IP to the

MicroBlaze Soft Processor Using the Fast Simplex Link,”

http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf.

[8] X. Huang, A. Acero and H. Hon, Spoken Language Processing,

Prentice Hall, 2001.

[9] S. Young et. Al, The HTK Book ver. 3.0, Cambridge University,

2000.

III ­ 1047

