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Abstract: This work is motivated by the desire to map the 

Independent Component Analysis (ICA) technique to a coarse-grain 

parallel-processing chip architecture. As in many other advanced 

DSP algorithms, the computation of nonlinear functions is critical in 

this algorithm. We discuss an efficient hardware approach1 to the 

computation of such functions for the ICA, some of which are 

compound and concatenated functions. All of the needed functions 

are regularized into a single efficient algorithm, and a new result is 

produced every cycle – in a  pipelined mode – even for a different 

function every cycle.  The underlying principle which makes the 

combined goals of high-speed and multi-functionality possible is 

significance-based polynomial interpolation of ROM tables. Very 

importantly, the paper uses a key formula for predicting and 

bounding the worst case arithmetic error. This theoretical result 

enables the designer to quickly select the architectural parameters

without the expensive simulations, while guaranteeing the desired 

accuracy. 

I.  INTRODUCTION

Independent Component Analysis (ICA) is one among several 

approaches to blind separation of signals. In theoretical terms, ICA 

is a method whereby high-dimensional multivariate data is 

decomposed into its statistically independent (scalar) components 

[1], thereby facilitating source signal acquisition, feature extraction 

and event classification. Imagine that in a room two people are 

speaking simultaneously and that there are two microphones which 

produce time signals denoted by x1(t) and x2(t). Each of these 

received signals is a weighted sum of the speech signals produced 

by the two speakers denoted by s1(t) and s2(t). Then we can express 

the received signals in terms of the source signals in terms of some 

weighting coefficients a11, a12, a21, and a22 that depend on the 

microphone characteristics and their distances from the speakers. 

Clearly, it would be useful to recover the original speech signals 

from the received signals. More generally, if there are m source 

signals and m received mixed signals, then their relationship could 

be expressed as 
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or in matrix-vector notation x(t) = A s(t). The ICA technique can be 

used to estimate A or its inverse W = A-1 based on the assumption of 

their statistical independence, which then allows blind separation of 

the original signals from their mixtures. As an example, consider 

the two source signals s1, s2 shown in Fig. 1(a), and that the only 
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observable signals are those shown in Fig. 1(b). The question then 

is whether it is possible and, if ‘yes’, how to recover the source 

signals blindly (without the knowledge of the mixing information). 

The answer is affirmative  based upon certain mild assumptions 

which can be found in [1],[2]. Indeed, the signals estimated by the 

application of the fast version of ICA, called Fast ICA [2],[3] are 

shown in Fig. 1(c). Except for a gain factor and sign, they are seen 

to be excellent replicas of the source signals. The technique is 

applicable not only to time signals but also to images, and has a 

wide range of potential applications in industrial and medical fields. 

(a)  Original signals  (b) Mixtures 

 (c) Blindly separated 

 signals through ICA 

Fig. 1 Typical application of ICA 

For some applications, ICA analysis on a workstation or a DSP 

board is adequate, but for others it is essential to have a VLSI chip 

that would perform the process in real-time. In [4] we had proposed 

mapping the ICA algorithm to the J-Platform which provides for 

many of the high speed applications such as FIR filtering of signals 

and images, Fast Fourier transform, solution of a linear system of 

equations, and advanced applications like reconstruction of CT 

images from fan beam projections and RGB to HSI conversion for 

video. Three very flexible, coarse-grain cells are used to map the 

ultra high speed objectives. These are the MA_PLUS [11] the 

Universal NonLinear (UNL) [5]-[8], and the Data fabric [11] cells. 

This paper discusses the architectural design of that UNL cell (for 

the computation of nonlinear functions of the ICA, some of which 

are compound or concatenated functions). With our approach all of 

the needed functions can be regularized into a single efficient 

algorithm.  A new result can be produced every cycle – in a 

pipelined mode – even for a different function every cycle.  The 

underlying principle which makes the combined goals of high-speed 

and multi-functionality possible is significance-based polynomial 

interpolation of small ROM tables. Very importantly, the paper uses 

a key formula for predicting and bounding the worst case arithmetic 

error. This result enables the designer to quickly select the 

architectural parameters without expensive simulations, while 

guaranteeing the desired accuracy. The paper emphasizes the 
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following five functions: (1) First derivative of (approximation to 

the) negentropy function [2] g(u) = G’(u) = u exp(-u2/2); (2)  second 

derivative of (approximation to the) negentropy function [2] g’(u) = 

G’’(u) = [ 1-u2]exp(-u2/2); (3) 1/x ; (4) x/x 1(5)and; . Note 

that the negentropy function itself G(u) = - exp(-u2/2) is not 

required in fastICA updates, and is therefore not considered in the 

architecture. Also, note that the first two functions are both 

compound and concatenated. Preliminary estimates indicate that the 

speed-up for nonlinear function calculation could be a factor of 10 

to 30 times as compared to DSP microprocessor boards, since 

iterative algorithms are typically employed on such boards. 

II. NEGENTROPY FUNCTION AND DERIVATIVES

To gain an intuitive feel for the negentropy function (actually an 

approximation to it [2]), G(u), and its derivatives, see Fig. 2. It will 

be seen in Appendix A that the third derivative of each function to 

be computed is also useful, therefore we plot derivatives up to 

G(5)(u) and even G(6)(u) whose zeros provides the locations of the 

maxima of G(5)(u). The corresponding mathematical expressions are 

also given in the figure. 

Fig. 2 The nonlinear functions for fastICA and several derivatives 

It is useful to remark that the number of cycles needed for the 

computation of g’(u) = G’’(u) = [ 1-u2]exp(-u2/2) on a DSP board 

may be estimated as 3+Q+R where Q is the number of cycles 

needed for determining the exponential, and R for norm/denorm. 

III.  SIGNIFICANCE-BASED COMPUTATION

As in [5], consider that the normalized argument ‘x’ is drawn from a 

semi-closed real interval Idomain = [a,b) and is represented by a bit 

vector X that is N  bits wide.  Shown in Fig. 3, this word is 

segmented into two fields:  the upper field consisting of M bits, and 

a lower field of L bits, such that M+L=N. The upper field invokes a 

2m point uniform grid (2m-1+2m-2 point in case of square-root and 

reciprocal-square-root) on the interval Idomain, where m  M; call the 

points on this grid as Xi , i=0,...,2m-1.   Now, suppose that the given 

operand ‘x’ lies in the i-th interpolation interval Ii =[Xi , Xi+1 ).

Then, we can use a polynomial of the form 
iciii yhygyfxP )(

to approximate f(x) over Ii = [Xi, Xi+1).  Here, y denotes the 

fractional location of x in the i-th interpolation interval Ii, i.e., y=(x-

Xi )/ ,  =Xi+1- Xi, the uniform grid interval, and yc=1-y. Note that x

is seen to be equal to Xi+y , which is in concert with the graphical 

representation in Fig. 1. Through a slight abuse of notation, we will 

write Pi(x) also as Pi(y).  The use of the “economic” form [5],[8], 
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Fig.  3  Input word X: M MSBs, L LSBs 

Value x  =  Xi +(2-M) y

involving the term yyc rather than y2 is designed to reduce the 

contribution of this second order term, thus leading to smaller 

blocks (on the VLSI chip) for the computation of this term. 

In a typical function approximation using the above formula, the 

terms from left to right tend to be of diminishing importance.  The 

central idea of Jain’s ‘significance-based computation’ is then to 

recognize the smaller field-widths of the quadratic term arguments 

and therefore to use lower  precision2, compared to the linear term 

[5]-[8].  In fact, one of the early circuits Jain et al. developed for 16-

bit arguments [8], uses only a single multiplication involving the 

linear term; the second order term was computed by a data driven 

shift upon hi, a shift that approximates multiplication with yyc.  For 

larger word lengths, however, it becomes necessary to use (a) a 

ROM table lookup for an approximation of yyc, addressed by the 

bits of ŷ, a  reduced precision version of y, and (b) then multiplying 

this product with hi on a small multiplier.  This small multiplication 

can be performed in parallel with the main multiplication for the 

linear term y*gi.  The additions can be pipelined, with the 

consequence that even for a 24 bit argument a new result can be 

obtained every cycle.  In fact, potentially, a different desired 

function (including compound and concatenated ones) for a new 

argument can be computed, each cycle.  This represents a 

significant advance over other hardware approaches. 

IV.   COMPUTATION DETAILS

Computation flow:  Returning to Fig. 3, the input word X is 

segmented into two fields. The upper field is used for addressing the 

main ROM, ROM-1, wherein the coefficients bit vector 

ihigifib  is stored as the i-th word.  The product yyc is 

approximated and stored in a smaller ROM, ROM-2. 

Chebyshev-Lagrange Polynomials: We use the Chebyshev-

Lagrange polynomial. Thus, given the function F(y) over the 

interval [0, 1], actually just its values at the roots zk , the well known 

Chebyshev-Lagrange polynomial [5] of degree D (with D equal to 

the number of interpolation roots used minus one) is 
D
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For the second order case, D=2, and the D+1 roots are: zk =  - 0.53, 

0,  0.53.  Note that for our purposes F(y) = f(Xi+y ).  It is also useful 

to remark that, in principle, the best polynomial can be generated 

using the Remez algorithm.  However, for relatively fine grids, i.e., 

when  is small, the accuracy gain turns out to be insignificant. 

Conversion to the Economic Form: The conversion is 

                                                
2

In the case of third order interpolation, used for double precision 

arguments [7], the third-order term is computed with yet lower precision — 

without significantly jeopardizing the accuracy of overall computation. 
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straightforward.  If the polynomial obtained is ai0 + ai1 y + ai2 y
2,

then  its  equivalent economic form is fi = ai0, gi = ai1+ai2 , and hi = 

-ai2.

Error Criterion:  Although several different criteria are often used, 

each with its own specific mathematical significance, in this paper 

we use the following dual error criteria: 

       (a)   )(xP̂)x(ftrue , and 

       (b)  )(xP̂)x(f
~

qz

where f(x) is the true value of the function in infinite precision, 

)(xP̂  is the value computed through our algorithm, and )(xf
~

 is the 

rounded value of  f(x).  The latter is often referred to as the ‘exactly

rounded’ value of the function.  We will require that Prob{ qz > 1 

ulp } = 0, where ulp stands for ‘unit in the last place’.

V. SINGLE-CYCLE ARCHITECTURE

An architecture for a 24 bit argument, multi-function UNL cell [5] 

is shown in Fig. 4.  This multi-function architecture uses two 

multipliers: M1 of size 22×16 to calculate the linear term y*gi, and 

M2 of size 14×12 to calculate the quadratic term hi*(yyc).  Also 

ROM-1 is 512×60 bits per function.  Nine bits from the MSB’s of 

the input are used for addressing the ROM-1, i.e., m=9.  ROM-2 is 

1024×10 bits, and is addressed by the leading 9 bits of y. Also, two 

adders are used in a pipeline mode to enable the generation of a new 

result every cycle.  The function select lines permit calculation of a  
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Fig. 3 Architecture of a 24 bit ‘single cycle’ nonlinear processor

different function, even every cycle.  The normalizer unit ensures 

that the input to the nonlinear core is in conformity with the input 

ranges for which it is designed.  Naturally, a denormalizer is 

provided at the multiplier output. M1 forms the critical path.  If its 

latency,  together  with that of its output  register, is m, then  this  is 

also the cycle time of the processor in a pipelined mode, and the 

corresponding operating frequency becomes 1/ m .  For recent 

advances in multipliers, see [9],[10]. 

Word Lengths:

W     =  Total number of bits in fi   =   I + w (I integer bits, 

            w fractional bits) 

v       =  Nonzero number of bits in gi

u       =  Nonzero number of bits in hi

r       =  Number of bits in ŷ

S      =  Number of bits in RD(ŷ ŷc) = 2+s,  where s is the 

 number of nonzero bits (the two leading bits are 

 zeros) 

A     =  Number of accumulator bits = s+g+I+a (one sign, 

 one guard, I integer bits, a fractional bits) 

B     =  Number of output bits  = Iout + b  (Iout integer bits); 

Iout = I for all functions except for cosine function 

             for which I=1, but Iout =0; also, for Log2 a sign bit 

 is needed so that B=s+I+b.

VI.   RESULTS FOR ICA NONLINEAR FUNCTIONS

The following five functions were considered of which the first two 

are special to the fastICA algorithm: (1) First derivative of 

(approximation to the) negentropy function [2] g(u) = G’(u) = u

exp(-u2/2); (2)  second derivative of (approximation to the) 

negentropy function [2] g’(u) = G’’(u) = [1-u2]exp(-u2/2); (3) 1/x, 

(4) x/,x 1(5)and ). Note that the first two functions are both 

compound and concatenated. As stated earlier, all of these are single 

cycle computations, resulting in an estimated 10 to 30 fold 

reduction compared to conventional computation of such nonlinear 

functions. Two architectures were designed as discussed below. 

A. 16 bit fixed point 

The parameters chosen are W=20;  a= 20;  r =7; S=7. This results in 

the following design and the corresponding errors. 

Input [N W m r]:  [16 20 7 7] 

        _b___w___a___r___S_____hmax_____ 

g_ICA  | 16  20  22  7   9   4.2118e-05 | 

gd_ICA | 16  20  22  7   9   9.1553e-05 | 

REC    | 14  18  20  7   9   0.00012207 | 

SQT    | 16  20  22  7   9   6.1035e-05 | 

RQT    |_14__18__20__7___9___0.00073242_| 

FUNC    ULP          |MAX ERR|     OK? 

g_ICA   1.5259e-05   9.5567e-06     Y 

gd_ICA  1.5259e-05   9.9981e-06     Y 

REC     6.1035e-05   3.7819e-05     Y 

SQT     1.5259e-05   9.7454e-06     Y 

RQT     6.1035e-05   4.375e-05      Y 

      Design is successful

B. 24 bit fixed point 

The parameters chosen are W=24; a = 30; r =9; S=10. This results 

in the following design and the corresponding errors. 

Input [N W m r]: [24 30 9 10] 

        _b___w___a___r___S_____hmax_______ 

g_ICA  | 24  30  32  10   12   2.6324e-06 | 

gd_ICA | 24  30  32  10   12   5.722e-06  | 

REC    | 22  28  30  10   12   7.6294e-06 | 

SQT    | 24  30  32  10   12   3.8147e-06 | 

RQT    |_22__28__30__10___12___4.5776e-05_| 
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FUNC    ULP          |MAX ERR|     OK? 

g_ICA   5.9605e-08   3.4324e-08     Y 

gd_ICA  5.9605e-08   3.7827e-08     Y 

REC     2.3842e-07   1.3411e-07     Y 

SQT     5.9605e-08   3.5972e-08     Y 

RQT     2.3842e-07   1.8487e-07     Y 

      Design is successful

It is important to remark that these architectures are designed based 

on the error bound derived in Appendix A. Although the notation 

therein is somewhat involved and the derivation tedious, the final 

result is quite compact and versatile. 

APPENDIX A. THEORETICAL ERROR PREDICTION

This discussion is quite similar to that in [5]. The approximation 

equation used, including the effect of all quantization steps and 

finite word lengths of the coefficients is 

       cŷŷSRDĥaTRyĝaTRf̂bRDP̂

where TR denotes truncation and RD roundoff. All errors discussed 

below are due to operations performed in the above equation. Each 

error estimate derived below is a reasonably tight upper bound for 

that particular operation. The sum of all those error bounds then 

provides an upper bound on the total error. 

Error due to Chebyshev Approximation: The error in approximating 

a function f by a third order Chebyshev polynomial T3 is given by 

| ( ) ( )| | ' ' ' ( )|maxf y T y f3

3

192

where  denotes the small interpolation interval as defined in 

Section II, and f ’’’( ) the third derivative. 

Errors due to round-off in the coefficients: 

;)1()1(23

;)1()1(22;)1()1(21

weihiĥ

weigiĝweifif̂

Error in the linear term: 

yeyigyeigyiĝ 2)2(

Therefore, 

)1(12 maxyeyigyiĝ

since ymax < 1. Now, because the  accumulator  truncation error is 

characterized by a one-sided uniform pdf, it is bounded as  < 2 –a.

As a result 

1yigyĝaTR

so that 

)1(1yigyiĝaTR  

Error in the second order term: Error in truncation of y to y^  is

given by 

)1(124
reyŷ

so that 
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Therefore, 

     )(
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yeyeycyycŷŷ 21211)4(1)4(

because |1 – 2y|max = 1. 

The magnitude of the error due to rounding to S1 bits is 

e5 1   2-(S1 + 1), therefore we can write 

       

ihecyyecyyih

ihecyyecyyihaTR
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)52(3
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Recognizing that | yyc|max = 1 / 4, we have 

       
maxih/ )11(412

Total Error: The magnitude of the error introduced due to the final 

round-off of P to b bits is  < 2–(b+1) , hence the total error is given 

by 

      f RD Pb ( ) 1 1 2 3

which can be written in an expanded form as 

      
1 2 3 4 3 1 1

2 2

/ ( ) | |max

( ) | |max

hi

qi

Finally, the total L is bounded as follows:  

)1(2
)1(

22

)1(2)3(29192)((3)3

11 b
max|h|

Sr

aw/xf|P̂f|total

The last term arises from the final roundoff. Thus

L Error( ) 2 25 for the 24 bit design 
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