
Single Cycle Nonlinear VLSI Cell

for the ICA Algorithm

V. K. Jain
University of South Florida

Tampa, Florida 33620, U.S.A.

Abstract: This work is motivated by the desire to map the

Independent Component Analysis (ICA) technique to a coarse-grain

parallel-processing chip architecture. As in many other advanced

DSP algorithms, the computation of nonlinear functions is critical in

this algorithm. We discuss an efficient hardware approach1 to the

computation of such functions for the ICA, some of which are

compound and concatenated functions. All of the needed functions

are regularized into a single efficient algorithm, and a new result is

produced every cycle – in a pipelined mode – even for a different

function every cycle. The underlying principle which makes the

combined goals of high-speed and multi-functionality possible is

significance-based polynomial interpolation of ROM tables. Very

importantly, the paper uses a key formula for predicting and

bounding the worst case arithmetic error. This theoretical result

enables the designer to quickly select the architectural parameters

without the expensive simulations, while guaranteeing the desired

accuracy.

I. INTRODUCTION

Independent Component Analysis (ICA) is one among several

approaches to blind separation of signals. In theoretical terms, ICA

is a method whereby high-dimensional multivariate data is

decomposed into its statistically independent (scalar) components

[1], thereby facilitating source signal acquisition, feature extraction

and event classification. Imagine that in a room two people are

speaking simultaneously and that there are two microphones which

produce time signals denoted by x1(t) and x2(t). Each of these

received signals is a weighted sum of the speech signals produced

by the two speakers denoted by s1(t) and s2(t). Then we can express

the received signals in terms of the source signals in terms of some

weighting coefficients a11, a12, a21, and a22 that depend on the

microphone characteristics and their distances from the speakers.

Clearly, it would be useful to recover the original speech signals

from the received signals. More generally, if there are m source

signals and m received mixed signals, then their relationship could

be expressed as

)(...)()()(

.......

)(...)()()(

)(...)()()(

2211

22221212

12121111

tsatsatsatx

tsatsatsatx

tsatsatsatx

mmmmmm

mm

mm (1)

or in matrix-vector notation x(t) = A s(t). The ICA technique can be

used to estimate A or its inverse W = A-1 based on the assumption of

their statistical independence, which then allows blind separation of

the original signals from their mixtures. As an example, consider

the two source signals s1, s2 shown in Fig. 1(a), and that the only

1

This work was supported in part by NSF Grant No. 0441212

observable signals are those shown in Fig. 1(b). The question then

is whether it is possible and, if ‘yes’, how to recover the source

signals blindly (without the knowledge of the mixing information).

The answer is affirmative based upon certain mild assumptions

which can be found in [1],[2]. Indeed, the signals estimated by the

application of the fast version of ICA, called Fast ICA [2],[3] are

shown in Fig. 1(c). Except for a gain factor and sign, they are seen

to be excellent replicas of the source signals. The technique is

applicable not only to time signals but also to images, and has a

wide range of potential applications in industrial and medical fields.

(a) Original signals (b) Mixtures

 (c) Blindly separated

 signals through ICA

Fig. 1 Typical application of ICA

For some applications, ICA analysis on a workstation or a DSP

board is adequate, but for others it is essential to have a VLSI chip

that would perform the process in real-time. In [4] we had proposed

mapping the ICA algorithm to the J-Platform which provides for

many of the high speed applications such as FIR filtering of signals

and images, Fast Fourier transform, solution of a linear system of

equations, and advanced applications like reconstruction of CT

images from fan beam projections and RGB to HSI conversion for

video. Three very flexible, coarse-grain cells are used to map the

ultra high speed objectives. These are the MA_PLUS [11] the

Universal NonLinear (UNL) [5]-[8], and the Data fabric [11] cells.

This paper discusses the architectural design of that UNL cell (for

the computation of nonlinear functions of the ICA, some of which

are compound or concatenated functions). With our approach all of

the needed functions can be regularized into a single efficient

algorithm. A new result can be produced every cycle – in a

pipelined mode – even for a different function every cycle. The

underlying principle which makes the combined goals of high-speed

and multi-functionality possible is significance-based polynomial

interpolation of small ROM tables. Very importantly, the paper uses

a key formula for predicting and bounding the worst case arithmetic

error. This result enables the designer to quickly select the

architectural parameters without expensive simulations, while

guaranteeing the desired accuracy. The paper emphasizes the

JET cockpit noise (S1)

Speech signal (S2)

JET cockpit noise (S1)

Speech signal (S2)

Sensed signal X1

X2

Sensed signal X1

X2

Estimated S1

Estimated -S2

Estimated S1

Estimated -S2

S
e
n

se
d

S
e
n

se
d

III 1040142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

following five functions: (1) First derivative of (approximation to

the) negentropy function [2] g(u) = G’(u) = u exp(-u2/2); (2) second

derivative of (approximation to the) negentropy function [2] g’(u) =

G’’(u) = [1-u2]exp(-u2/2); (3) 1/x ; (4) x/x 1(5)and; . Note

that the negentropy function itself G(u) = - exp(-u2/2) is not

required in fastICA updates, and is therefore not considered in the

architecture. Also, note that the first two functions are both

compound and concatenated. Preliminary estimates indicate that the

speed-up for nonlinear function calculation could be a factor of 10

to 30 times as compared to DSP microprocessor boards, since

iterative algorithms are typically employed on such boards.

II. NEGENTROPY FUNCTION AND DERIVATIVES

To gain an intuitive feel for the negentropy function (actually an

approximation to it [2]), G(u), and its derivatives, see Fig. 2. It will

be seen in Appendix A that the third derivative of each function to

be computed is also useful, therefore we plot derivatives up to

G(5)(u) and even G(6)(u) whose zeros provides the locations of the

maxima of G(5)(u). The corresponding mathematical expressions are

also given in the figure.

Fig. 2 The nonlinear functions for fastICA and several derivatives

It is useful to remark that the number of cycles needed for the

computation of g’(u) = G’’(u) = [1-u2]exp(-u2/2) on a DSP board

may be estimated as 3+Q+R where Q is the number of cycles

needed for determining the exponential, and R for norm/denorm.

III. SIGNIFICANCE-BASED COMPUTATION

As in [5], consider that the normalized argument ‘x’ is drawn from a

semi-closed real interval Idomain = [a,b) and is represented by a bit

vector X that is N bits wide. Shown in Fig. 3, this word is

segmented into two fields: the upper field consisting of M bits, and

a lower field of L bits, such that M+L=N. The upper field invokes a

2m point uniform grid (2m-1+2m-2 point in case of square-root and

reciprocal-square-root) on the interval Idomain, where m M; call the

points on this grid as Xi , i=0,...,2m-1. Now, suppose that the given

operand ‘x’ lies in the i-th interpolation interval Ii =[Xi , Xi+1).

Then, we can use a polynomial of the form
iciii yhygyfxP)(

to approximate f(x) over Ii = [Xi, Xi+1). Here, y denotes the

fractional location of x in the i-th interpolation interval Ii, i.e., y=(x-

Xi)/ , =Xi+1- Xi, the uniform grid interval, and yc=1-y. Note that x

is seen to be equal to Xi+y , which is in concert with the graphical

representation in Fig. 1. Through a slight abuse of notation, we will

write Pi(x) also as Pi(y). The use of the “economic” form [5],[8],

 y
^

 y
 ^

 y

ROM

Address bits for
ROM-1 lookup

Address bits for
ROM-2 lookup

M

 r

L

N

 X
 i

Fig. 3 Input word X: M MSBs, L LSBs

Value x = Xi +(2-M) y

involving the term yyc rather than y2 is designed to reduce the

contribution of this second order term, thus leading to smaller

blocks (on the VLSI chip) for the computation of this term.

In a typical function approximation using the above formula, the

terms from left to right tend to be of diminishing importance. The

central idea of Jain’s ‘significance-based computation’ is then to

recognize the smaller field-widths of the quadratic term arguments

and therefore to use lower precision2, compared to the linear term

[5]-[8]. In fact, one of the early circuits Jain et al. developed for 16-

bit arguments [8], uses only a single multiplication involving the

linear term; the second order term was computed by a data driven

shift upon hi, a shift that approximates multiplication with yyc. For

larger word lengths, however, it becomes necessary to use (a) a

ROM table lookup for an approximation of yyc, addressed by the

bits of ŷ, a reduced precision version of y, and (b) then multiplying

this product with hi on a small multiplier. This small multiplication

can be performed in parallel with the main multiplication for the

linear term y*gi. The additions can be pipelined, with the

consequence that even for a 24 bit argument a new result can be

obtained every cycle. In fact, potentially, a different desired

function (including compound and concatenated ones) for a new

argument can be computed, each cycle. This represents a

significant advance over other hardware approaches.

IV. COMPUTATION DETAILS

Computation flow: Returning to Fig. 3, the input word X is

segmented into two fields. The upper field is used for addressing the

main ROM, ROM-1, wherein the coefficients bit vector

ihigifib is stored as the i-th word. The product yyc is

approximated and stored in a smaller ROM, ROM-2.

Chebyshev-Lagrange Polynomials: We use the Chebyshev-

Lagrange polynomial. Thus, given the function F(y) over the

interval [0, 1], actually just its values at the roots zk , the well known

Chebyshev-Lagrange polynomial [5] of degree D (with D equal to

the number of interpolation roots used minus one) is
D

k

D

kjj jk

j

ki
zz

zy
zFyP

0 ,1

)()(

For the second order case, D=2, and the D+1 roots are: zk = - 0.53,

0, 0.53. Note that for our purposes F(y) = f(Xi+y). It is also useful

to remark that, in principle, the best polynomial can be generated

using the Remez algorithm. However, for relatively fine grids, i.e.,

when is small, the accuracy gain turns out to be insignificant.

Conversion to the Economic Form: The conversion is

2

In the case of third order interpolation, used for double precision

arguments [7], the third-order term is computed with yet lower precision —

without significantly jeopardizing the accuracy of overall computation.

III 1041

straightforward. If the polynomial obtained is ai0 + ai1 y + ai2 y
2,

then its equivalent economic form is fi = ai0, gi = ai1+ai2 , and hi =

-ai2.

Error Criterion: Although several different criteria are often used,

each with its own specific mathematical significance, in this paper

we use the following dual error criteria:

 (a))(xP̂)x(ftrue , and

 (b))(xP̂)x(f
~

qz

where f(x) is the true value of the function in infinite precision,

)(xP̂ is the value computed through our algorithm, and)(xf
~

 is the

rounded value of f(x). The latter is often referred to as the ‘exactly

rounded’ value of the function. We will require that Prob{ qz > 1

ulp } = 0, where ulp stands for ‘unit in the last place’.

V. SINGLE-CYCLE ARCHITECTURE

An architecture for a 24 bit argument, multi-function UNL cell [5]

is shown in Fig. 4. This multi-function architecture uses two

multipliers: M1 of size 22×16 to calculate the linear term y*gi, and

M2 of size 14×12 to calculate the quadratic term hi*(yyc). Also

ROM-1 is 512×60 bits per function. Nine bits from the MSB’s of

the input are used for addressing the ROM-1, i.e., m=9. ROM-2 is

1024×10 bits, and is addressed by the leading 9 bits of y. Also, two

adders are used in a pipeline mode to enable the generation of a new

result every cycle. The function select lines permit calculation of a

INPUT 24

zero-th coeff

TABLE

f

first-coeff.

TABLE

g

sec-coeff.

TABLE

i i i

ROM-1 ROM-2

MULTIPLIER

 M1

ADDER/SUB

h

^
y

y cŷ
y

^

Normalizer

Unit

Function Select

X (MSBs) y (LSBs)
i

MULTIPLIER

M2

ADDER/SUB

3

5

S S S
2 1 0 P P P P P

4 3 2 1 0

24

(Inverse priority bits)

Register-2

Register-1

Register-7

Register-9

Register-8

Register-3

Reg-5 Reg-6

Register-4

P
^

Denormalizer

OUTPUT

Fig. 3 Architecture of a 24 bit ‘single cycle’ nonlinear processor

different function, even every cycle. The normalizer unit ensures

that the input to the nonlinear core is in conformity with the input

ranges for which it is designed. Naturally, a denormalizer is

provided at the multiplier output. M1 forms the critical path. If its

latency, together with that of its output register, is m, then this is

also the cycle time of the processor in a pipelined mode, and the

corresponding operating frequency becomes 1/ m . For recent

advances in multipliers, see [9],[10].

Word Lengths:

W = Total number of bits in fi = I + w (I integer bits,

 w fractional bits)

v = Nonzero number of bits in gi

u = Nonzero number of bits in hi

r = Number of bits in ŷ

S = Number of bits in RD(ŷ ŷc) = 2+s, where s is the

 number of nonzero bits (the two leading bits are

 zeros)

A = Number of accumulator bits = s+g+I+a (one sign,

 one guard, I integer bits, a fractional bits)

B = Number of output bits = Iout + b (Iout integer bits);

Iout = I for all functions except for cosine function

 for which I=1, but Iout =0; also, for Log2 a sign bit

 is needed so that B=s+I+b.

VI. RESULTS FOR ICA NONLINEAR FUNCTIONS

The following five functions were considered of which the first two

are special to the fastICA algorithm: (1) First derivative of

(approximation to the) negentropy function [2] g(u) = G’(u) = u

exp(-u2/2); (2) second derivative of (approximation to the)

negentropy function [2] g’(u) = G’’(u) = [1-u2]exp(-u2/2); (3) 1/x,

(4) x/,x 1(5)and). Note that the first two functions are both

compound and concatenated. As stated earlier, all of these are single

cycle computations, resulting in an estimated 10 to 30 fold

reduction compared to conventional computation of such nonlinear

functions. Two architectures were designed as discussed below.

A. 16 bit fixed point

The parameters chosen are W=20; a= 20; r =7; S=7. This results in

the following design and the corresponding errors.

Input [N W m r]: [16 20 7 7]

 _b___w___a___r___S_____hmax_____

g_ICA | 16 20 22 7 9 4.2118e-05 |

gd_ICA | 16 20 22 7 9 9.1553e-05 |

REC | 14 18 20 7 9 0.00012207 |

SQT | 16 20 22 7 9 6.1035e-05 |

RQT |_14__18__20__7___9___0.00073242_|

FUNC ULP |MAX ERR| OK?

g_ICA 1.5259e-05 9.5567e-06 Y

gd_ICA 1.5259e-05 9.9981e-06 Y

REC 6.1035e-05 3.7819e-05 Y

SQT 1.5259e-05 9.7454e-06 Y

RQT 6.1035e-05 4.375e-05 Y

 Design is successful

B. 24 bit fixed point

The parameters chosen are W=24; a = 30; r =9; S=10. This results

in the following design and the corresponding errors.

Input [N W m r]: [24 30 9 10]

 _b___w___a___r___S_____hmax_______

g_ICA | 24 30 32 10 12 2.6324e-06 |

gd_ICA | 24 30 32 10 12 5.722e-06 |

REC | 22 28 30 10 12 7.6294e-06 |

SQT | 24 30 32 10 12 3.8147e-06 |

RQT |_22__28__30__10___12___4.5776e-05_|

III 1042

FUNC ULP |MAX ERR| OK?

g_ICA 5.9605e-08 3.4324e-08 Y

gd_ICA 5.9605e-08 3.7827e-08 Y

REC 2.3842e-07 1.3411e-07 Y

SQT 5.9605e-08 3.5972e-08 Y

RQT 2.3842e-07 1.8487e-07 Y

 Design is successful

It is important to remark that these architectures are designed based

on the error bound derived in Appendix A. Although the notation

therein is somewhat involved and the derivation tedious, the final

result is quite compact and versatile.

APPENDIX A. THEORETICAL ERROR PREDICTION

This discussion is quite similar to that in [5]. The approximation

equation used, including the effect of all quantization steps and

finite word lengths of the coefficients is

 cŷŷSRDĥaTRyĝaTRf̂bRDP̂

where TR denotes truncation and RD roundoff. All errors discussed

below are due to operations performed in the above equation. Each

error estimate derived below is a reasonably tight upper bound for

that particular operation. The sum of all those error bounds then

provides an upper bound on the total error.

Error due to Chebyshev Approximation: The error in approximating

a function f by a third order Chebyshev polynomial T3 is given by

| () ()| | ' ' ' ()|maxf y T y f3

3

192

where denotes the small interpolation interval as defined in

Section II, and f ’’’() the third derivative.

Errors due to round-off in the coefficients:

;)1()1(23

;)1()1(22;)1()1(21

weihiĥ

weigiĝweifif̂

Error in the linear term:

yeyigyeigyiĝ 2)2(

Therefore,

)1(12 maxyeyigyiĝ

since ymax < 1. Now, because the accumulator truncation error is

characterized by a one-sided uniform pdf, it is bounded as < 2 –a.

As a result

1yigyĝaTR

so that

)1(1yigyiĝaTR

Error in the second order term: Error in truncation of y to y^ is

given by

)1(124
reyŷ

so that

)21(4

2
4

)21(4)4(1)4(

yecyy

eyecyyeyeycŷŷ

Therefore,

)(
max

yeyeycyycŷŷ 21211)4(1)4(

because |1 – 2y|max = 1.

The magnitude of the error due to rounding to S1 bits is

e5 1 2-(S1 + 1), therefore we can write

ihecyyecyyih

ihecyyecyyihaTR

ecŷŷeihaTRcŷŷSRDiĥaTR

)52(3

)52(3

)52)(3()(1

and

)(

maxih
maxcyy

cyyih)cŷŷ(SRDiĥaTR

2)12(1

1

Recognizing that | yyc|max = 1 / 4, we have

maxih/)11(412

Total Error: The magnitude of the error introduced due to the final

round-off of P to b bits is < 2–(b+1) , hence the total error is given

by

 f RD Pb () 1 1 2 3

which can be written in an expanded form as

1 2 3 4 3 1 1

2 2

/ () | |max

() | |max

hi

qi

Finally, the total L is bounded as follows:

)1(2
)1(

22

)1(2)3(29192)((3)3

11 b
max|h|

Sr

aw/xf|P̂f|total

The last term arises from the final roundoff. Thus

L Error() 2 25 for the 24 bit design

REFERENCES

[1] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component

Analysis, NY: John Wiley and Sons, 2001.

[2] A. Hyvärinen and E. Oja, “Independent Component Analysis:

algorithms and applications”, Neural Networks, Vol. 13, pp. 411-430,

2000.

[3] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for

Independent Component Analysis”, Neural Computation, Vol. 9, Issue

7, pp. 1483-1492, October 1997.

[4] V. K. Jain, S. Bhanja, G. H. Chapman, L. Doddannagari, and N.

Nguyen, “A Parallel Architecture for the ICA Algorithm: DSP Plane

of a 3-D Heterogeneous Sensor,” Proc. Int. Conf. on Acoustics Speech

and Signal Processing, pp. V-77 to V-80, March 2005.

[5] V. K. Jain, S. Shrivastava, A. D. Snider, D. Damerow, and D. Chester,

“Hardware implementation of a nonlinear processor,” Proc. IEEE Int.

Symp. on Circuits and Systems, pp. VI-509 to VI-514, May 1999.

[6] V. K. Jain, and L. Lin, “Floating-point nonlinear DSP coprocessor cell

-- Two cycle chip,” Proc. IEEE Workshop on VLSI Signal Processing,

pp. 45-54, Oct. 1996.

[7] V. K. Jain, and L. Lin, “High-speed double precision computation of

nonlinear functions,” Proc. Int. Symposium on Computer Arithmetic,

(Ed. Knowles and McAllister), pp. 107-114, July 1995.

[8] V. K. Jain, and L. Lin, “Image processing using a universal nonlinear

cell,” IEEE Trans. on Components Packaging and Manufacturing

Technology, pp. 342-349, August 1994.

[9] N. Itoh, et al., “A 600-MHz 54×54-bit multiplier with rectangular-

styled Wallace tree”, IEEE Journal of Solid-State Circuits, pp. 249 -

257, Feb. 2001.

[10] Y. Hagihara, et al., “A 2.7 ns 0.25 µm CMOS 54 × 54b multiplier,”

Proc. IEEE Int. Solid State Circuits Conf., pp. 296-297, Feb. 1998.

[11] V. K. Jain, and S. Shrivastava, “Rapid system prototyping for high

performance reconfigurable computing,” Design Automation for

Embedded Systems Jr, pp. 339-350, August 2000.

III 1043

