
DESIGN OF APPLICATION SPECIFIC PROCESSORS FOR THE CACHED FFT
ALGORITHM

O. Atak, A. Atalar, E. Arikan
Department of Electrical

and Electronics Engineering
Bilkent University,
Ankara, Turkey

H.Ishebabi, D. Kammler, G. Ascheid, H. Meyr
Institute for Integrated

Signal Processing Systems,
RWTH Aachen University,

Aachen, Germany

M. Nicola, G. Masera
VLSI Lab

Electronic Department
Politecnico di Torino,

Torino, ITALY

ABSTRACT
Orthogonal Frequency Division Multiplexing (OFDM) is a
data transmission technique which is used in wired and wire-
less digital communication systems. In this technique, Fast
Fourier Transformation (FFT) and inverse FFT (IFFT) are
kernel processing blocks in an OFDM system, and are used
for data (de)modulation. OFDM systems are increasingly
required to be flexible to accommodate different standards
and operation modes, in addition to being energy-efficient. A
trade-off between these two conflicting requirements can be
achieved by employing Application-Specific Instruction-Set
Processors (ASIPs). In this paper, two ASIP design concepts
for the Cached FFT algorithm (CFFT) are presented. A
reduction in energy dissipation of up to 25% is achieved
compared to an ASIP for the widely used Cooley-Tukey FFT
algorithm, which was designed by using the same design
methodology and technology. Further, a modified CFFT al-
gorithm which enables a better cache utilization is presented.
This modification reduces the energy dissipation by up to
10% compared to the original CFFT implementation.

I. INTRODUCTION

In Orthogonal Frequency Division Multiplexing (OFDM)
Systems, data bits are sent by using multiple sub-carriers
in order to obtain a good performance in highly dispersive
channels, and a good spectral efficiency. Because of its
robustness against frequency-selective fading and narrow-
band interference, OFDM is applied in several digital wire-
less communication systems such as Wireless Local Area
Networks and Terrestrial Digital Video Broadcasting (DVB-
T). In OFDM systems, Inverse Fast Fourier Transformation
(IFFT) and Fast Fourier Transformation (FFT) are used for
modulation and demodulation respectively. From a signal
processing perspective these are two key blocks in an OFDM
system. In particular, in hand-held devices an energy efficient
implementation is inevitable. To cover different standards
using OFDM (and, in a next step, other schemes like CDMA,
TDMA), a programmable solutions has strong advantages.
A general purpose processor, however, is far less energy
efficient. A trade-off between flexibility, energy-efficiency
and real-time requirements can be achieved by employing

Application Specific Instruction Set Processors (ASIPs). It
was shown in [1], [2] that ASIPs can be used to efficiently
implement the Cooley-Tukey FFT (CT-FFT) algorithm with
a high degree of flexibility. The energy-efficiency of FFT
ASIPs can be significantly increased by taking advantage of
newer FFT algorithms such as the Cached FFT algorithm
(CFFT). This algorithm efficiently uses data locality to
reduce the number of accesses to the main data memory [3].
We therefore present an ASIP design which utilize the advan-
tage offered by the CFFT algorithm. Furthermore, we show
that given a suitable processor architecture, the algorithm
can be efficiently parallelized at the instruction level. In
order to have a conclusive comparison between ASIPs which
implement the CT-FFT and the CFFT algorithms, the same
design flow and technology are used as in [1]. The design
flow is based on the Architecture Description Language
(ADL) LISA [4] and on a framework for automated ASIP
implementation [5].

For a variable length implementation of the CFFT algo-
rithm, the size of the cache is selected to fit the largest FFT
size. This leads to an inefficient cache utilization for lower
size FFT. This paper presents a modified CFFT algorithm
which allows a better cache utilization for a lower size FFT.
This increases the energy-efficiency of the implementation.

The rest of this paper is organized as follows: the modified
CFFT algorithm is presented in section II. Two architectures
for the Cached FFT algorithm are then presented in section
III. A comparison of results is given in section IV. Finally,
concluding remarks are provided in section V.

II. THE MODIFIED CFFT ALGORITHM

The notation and the terminology in this section are taken
from the description of the CFFT algorithm in [3], which
will not be reproduced here for space reasons. The size of
the cache of an implementation of the CFFT algorithm is
determined by the number of epochs of the implementation,
and by the size of the FFT [3]. For a variable length
implementation, the size of the cache is determined by the
largest possible number of points [6]. Smaller size FFTs use
a part of the cache only, so that the latter is only partially
utilized. However, it is possible to change the structure of

III 1028142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

the algorithm to fully exploit the cache. This is achieved
by computing more stages in epoch 0, rather than evenly
distributing the stage computation in the two epochs. The
parameters of the CFFT algorithm for the 2 epochs are then
determined as follows:

1) The number of butterflies in a pass is given by C/2,
where C is cache size.

2) The number of passes for the two epochs is given by
log2C and N − log2C for epoch 0 and 1 respectively,
where N is the number of FFT points.

3) The number of groups is given by N/C.

In this case, C is given by Cmodi f ied =
√

Nmax, rather than
Coriginal =

√
N. Since Cmodi f ied >Coriginal for lower size FFT,

less number of groups are required because of the larger
number of butterflies in a pass. Consequently, the number of
cache loading and dumping is reduced.

For example, for a 64 point FFT, there are 6 passes
(stages), and Coriginal = 8. If Nmax = 256, Cmodi f ied = 16, the
number of groups is 4, and the number of butterflies in a
pass is 8. The resulting flow graph is shown in figure 1. A
comparison of the number of passes per epoch, groups per
pass and butterflies per group is given in table I.

Fig. 1. Modified Cached FFT Algorithm

Table I. Comparison for N = 64 and Nmax = 256
original modified

Passes (epoch 0/ epoch 1) 3/3 4/2
Groups per pass 8 4
Butterflies per group 4 8

III. ARCHITECTURES FOR THE CFFT
ALGORITHM

In this section, a Single Instruction Single Data (SISD)
and a Very Large Instruction Word (VLIW) processor ar-
chitecture for the CFFT algorithm are presented. The basic
instruction-set for the two architectures is the same. In both
processors, registers are used as caches. Since the size of
FFT that can be implemented depends on the size of the

cache and the number of epochs, a cache size of 32 and
a number of 2 for epochs is selected. Then, the processors
can compute up to 1024 points according to the equation
C = N

1
E where E is the number of epochs [3].

III-A. Instruction-Set Design

Both processors have a special BFLY instruction which
calculates the register indexes and the twiddle coefficient
address. The address calculations requires: 1) The total
number of passes, groups and butterflies. These 3 parameters
together with the number of bit reversing are specified in a
16-bit control register (CTR). 2) The group, pass, butterfly
and the epoch numbers for a given iteration. The first three
parameters are passed with general purpose registers whereas
the epoch number is passed as a 2 bit immediate value.
Figure 2 shows the structure of the instruction.

Fig. 2. Structure of the BFLY instruction

For speeding-up the execution of loops, a simple RPT
instruction was added, which causes the architecture to
repeat the following instruction for a specified number of
times.

For loading data from the memory into the cache registers,
a READ instruction was added. The instruction uses 2
pointers: Read Pointer (RP) for indexing the memory and
Cache Pointer (CP) for indexing the cache registers. The
READ instruction loads data from memory addressed by RP
into the cache register indexed by CP. It also automatically
increments the CP, and takes the number of increment for
RP as an immediate operand. The code below shows how
32 data words are loaded into the cache registers and the
butterflies computed.

RPT #32
READ #1
RPT #16
BFLY R[1],R[2],R[3]++,#0

Both RP and CP are dedicated registers, and can be initial-
ized by special instructions.

III 1029

III-B. The SISD Architecture

A load-store architecture with 6 pipeline stages was im-
plemented. The architecture has 8 general purpose registers
in addition to the 32 cache registers and 12 special purpose
registers. The latter ones are used for addressing and for flow
control. In total, there are 3 memories for program, data and
coefficients with the configurations 24x256, 32x1024 and
32x512 respectively. The 16-bit real and imaginary parts of
data or coefficients are concatenated to form 32-bit words.

The stages EX2 to EX4 are used by the BFLY instruction
only. The execution of this instruction proceeds as follows:
In EX1 stage, the 4 operands of the BFLY instruction are
used to calculate cache register indexes and the twiddle
address. The twiddle is then fetched from the dedicated
twiddle memory. In the following two stages, a complex
multiplication between the second input sample and the
twiddle factor is performed. Four parallel multiplications are
computed in one stage, followed by two parallel additions in
the other. In the final pipeline stage, the results calculated in
the previous stage are added to and subtracted from the first
input sample to calculate the 2 outputs of the butterfly, and
the results are then saved to the respective cache registers.

III-C. The VLIW Architecture

The second implemented architecture is a load-store
VLIW ASIP with 4 slots, each of which can execute a BFLY
instruction. The BFLY instruction is similar to the one in
the SISD architecture with the difference that the execution
occurs in 3 rather than 4 stages. In this case, the last 2
operations in the BFLY are done in one stage. The reason is
that, in the former case, the BFLY instruction takes its inputs
in the 3rd pipeline stage and outputs the result in the 6th. For
the SISD architecture, the BFLY instructions are executed
sequentially, and there is no data hazard between the passes.
However, for the VLIW case, 4 BFLY instructions are
executed in parallel and there are data hazards between the
passes due to pipelining. In order to reduce this problem,
the last two pipeline stages are combined so that the results
of the BFLY instructions are available earlier. As it will be
shown in section IV, the resulting increase in the critical
path is compensated by the higher degree of parallelism.
An alternative solution of using a forwarding mechanism
is not considered for this architecture. Such a mechanism
would result in a significant area increase, since each of the
8 outputs could potentially go into any of the 8 inputs.

Combining the last two stages does not completely resolve
data dependencies. Because of significant area increase,
interlocking was not implemented. Instead, since the code
size is rather small, the problem is resolved in the assembly
source by inserting NOP instructions between the passes.
The trade-off is acceptable in this case because there is
a maximum of 7% increase in total number of executed
instructions for N = 256.

Since 4 butterfly instructions execute in parallel, and since
they need 4 different twiddle factors for some passes, the
twiddle coefficient memory is divided into 4 physically
separate memories, each with the configuration 32×128.
Each slot of the VLIW architecture has access to every of
the 4 twiddle memories. Expensive interleaving is not nec-
essary because access conflicts can be completely avoided
in software. Table II shows the twiddle addressing scheme
for the VLIW architecture. The most significant 2 bits are
used to select the twiddle memory. The 2 bits are in turn
determined by the group, pass, epoch and the butterfly
number. In any iteration, the former 3 numbers are the same.
Therefore, selecting butterfly numbers having a difference of
4 guarantees that there is no conflict for all passes. The code
below shows how this is achieved for N=64 for epoch 0 (for
modified CFFT).

BFLY R[0],R[1],R[2]++,#0 || \
BFLY R[0],R[1],R[3]++,#0 || \
BFLY R[0],R[1],R[4]++,#0 || \
BFLY R[0],R[1],R[5]++,#0

The registers R[2],R[3],R[4] and R[5] which contain the
butterfly numbers are initialized to 0, 4, 8 and 12 respectively
prior to each group iteration.

Table II. Twiddle Addressing Scheme for the VLIW ASIP
E P Twiddle Coefficient Address
0 0 0 0 0 0 0 0 0 0 0

1 B0 0 0 0 0 0 0 0 0
2 B1 B0 0 0 0 0 0 0 0
3 B2 B1 B0 0 0 0 0 0 0
4 B3 B2 B1 B0 0 0 0 0 0

1 0 G4 G3 G2 G1 G0 0 0 0 0
1 B0 G4 G3 G2 G1 G0 0 0 0
2 B1 B0 G4 G3 G2 G1 G0 0 0
3 B2 B1 B0 G4 G3 G2 G1 G0 0
4 B3 B2 B1 B0 G4 G3 G2 G1 G0

︸ ︷︷ ︸ ︸ ︷︷ ︸

Sel. the Sel. the cell within the twiddle
memory memory

IV. RESULTS AND DISCUSSION

The ASIPs were targeted for a 130nm technology library.
Table III shows a comparison of 3 ASIPs. CFFT-S is the
SISD ASIP that was described in Section III-B. For a com-
parison with the Cooley-Tukey algorithm, the ASIP which is
described in [1] is considered. In the publication, two ASIPs
with an optimized data-path and with an optimized control-
path respectively are described. The former is selected for
comparison because this ASIP is comparable to CFFT-S:
both contain a butterfly instruction which fetch the operands
and update the addresses with a minimum in overhead.
However, the data path optimized ASIP, which is here called
CT-D, does not have instructions for ZOL as is the case
with CFFT-S. Since this comparison aims at determining
the reduction in energy dissipation as a consequence of less
number of accesses to the main memory, a direct comparison

III 1030

with CFFT-S would be inconclusive. Therefore, an ASIP CT-
Z which is similar to CT-D, but which supports nested ZOLs
was implemented. The selected technique for nested ZOLs
is the same as in [1]. The bypass mechanism of CT-D was
not re-implemented in CT-Z. This is because the CT-FFT
algorithm can be similarly implemented on CT-Z without
any need for bypassing.

The effectiveness of computing the butterflies from the
cache registers can be observed from table III, where energy
dissipation is reduced by 25% and 22% for 256 and 1024
points respectively. However, this implementation of the
CFFT algorithm is slower by 21% (run-time) for 256 points.
This is attributed to low cache utilization for lower points
FFT. Table IV shows the results for the modified CFFT
algorithm. The advantage of our modifications is that the
number of groups is decreased, so that the number of cache
dumps and loads is also decreased. This reduces the increase
in run-time to 8% for 256 points, with a corresponding
further reduction in energy dissipation of 10%. Significantly
better results can be obtained by unrolling the groups and
pass loops for the modified algorithm as shown in the table.

Table V shows the results for the VLIW implementation
of the modified algorithm. A speed-up of 186% and 39%
for 256 and 1024 points are achieved. But, this comes at a
cost of more than double the gate count. The area increase
is primarily caused by the duplication of the data path. No
area overhead is incurred for resolving data dependencies.
These are completely resolved by the techniques which are
described in the previous section. Even though the CFFT
algorithm could be efficiently parallelized at the instruction
level with respect to execution time, this approach increases
the energy consumption considerably by 17% and 48%.

Table III. Comparison of CFFT and CT-FFT ASIPs
CFFT-S CT-Z CT-D

Cycles for N= 256 2410 1729 1997
for N=1024 8906 7757 9351

Energy cons. (µJ) for N= 256 0.268 0.359 0.384
for N=1024 1.270 1.635 1.872

Area (KGates) 66.6 76.7 106.0
Clock period (ns) 4.32 4.94 5.00

Table IV. Different CFFT Implementations
Original Mod. Unrolled

Cycles for N= 256 2410 1811 1322
for N=1024 8906 8555 6345

Energy cons. (µJ) for N= 256 0.268 0.241 0.214
for N=1024 1.270 1.255 1.122

Table V. Comparison of SISD and VLIW Implementations
SISD VLIW

Cycles for N= 256 1811 819
for N=1024 8555 5636

Energy consumption (µJ) for N= 256 0.241 0.292
for N=1024 1.255 2.409

Area (KGates) 66.6 156.7
Clock period (ns) 4.32 4.88

V. CONCLUSION

In this work, two ASIP design concepts for the Cached
FFT algorithm have been presented. The design exploration
was conducted with the ADL LISA. It has been shown
that the Cached FFT algorithm can lead to a significant
lower energy dissipation over the Cooley-Tukey algorithm.
Moreover, a modified CFFT algorithm with a better cache
utilization has been presented. This increases the efficiency
of the CFFT algorithm, both with respect to execution time
and energy dissipation. Further, it has been shown that
the CFFT algorithm can be efficiently parallelized at the
instruction level for higher performance without an overhead
in area. In our future work, further FFT algorithms are going
to be explored.

VI. ACKNOWLEDGMENT

This work was supported by the European Union FP6 NoE
NEWCOM under contract FP6-507325

VII. REFERENCES

[1] M. Nicola, G. Masera, M. Zamboni, H. Ishebabi,
D. Kammler, G. Ascheid, and H. Meyr, “FFT processor:
a case study in ASIP development,” in IST Mobile
Summit, Dresden, Germany, June 2005.

[2] K. Heo, S. Cho, J. Lee, and M. Sunwoo, “Application-
specific DSP architecture for fast fourier transform,” in
IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, June 2003, pp.
369–377.

[3] B. M. Baas, “A low-power, high-performance, 1024-
point FFT processor,” in IEEE Journal of Solid-State
Circuits, vol. 34, no. 3, 1999, pp. 380–387.

[4] Hoffmann, A. and Schliebusch, O. and Nohl, A. and
Braun, G. and Meyr, H., “A Methodology for the
Design of Application Specific Instruction Set Proces-
sors (ASIP) Using the Machine Description Language
LISA,” in Proceedings of the International Conference
on Computer Aided Design (ICCAD). San Jose, USA:
IEEE/ACM, Nov. 2001.

[5] Schliebusch, O. and Chattopadhyay, A. and Kammler,
D. and Ascheid, D. and Leupers, R. and Meyr, H. and
Kogel, T., “A Framework for Automated and Optimized
ASIP Implementation Supporting Multiple Hardware
Description Languages,” in ASP-DAC, Shanghai, China,
Jan 2005.

[6] J. Kuo, C. Wen, C. Lin, and A. Wu, “VLSI design
of a variable length FFT/IFFT processor for OFDM-
based communication systems,” in EORASIP Journal on
Applied Signal Processing, vol. 13. Hindawi Publishing
Corporation, 2003, pp. 1306–1316.

III 1031

