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Abstract— The design of Fast Fourier Transform (FFT) ar-
chitecture is one of the bottlenecks in the implementation of
OFDM systems. With the recent progress on the development
of lossless transform, its possible applications in communication
systems have received more and more attentions. In this paper,
a lossless integer FFT (IntFFT) architecture based on radix-22

FFT algorithm is analyzed and implemented. By exploring the
symmetric property, the overall memory usage is reduced by
27.4% for a 64-point FFT design. The variance of quantization
loss for both IntFFT and conventional fixed-point FFT (FxpFFT)
is derived. The signal to quantization loss ratio (SQNR) and
the bit error rate (BER) performance in system level is also
simulated to test the accuracy of IntFFT. Based on the simulation
results, IntFFT can yield comparative performance while using
less memory usage than FxpFFT designs.

I. INTRODUCTION

Transform-based signal processing is one of the most
widely used techniques in current multimedia systems and
communication systems such as JPEG, MPEG, orthogonal
frequency demodulation multiplexing (OFDM) systems,
asymmetric digital subscribe line (ADSL), digital video
broadcasting (DVB) and digital audio broadcasting (DAB).
During the past decade, the rapid development of wavelet-
based signal processing [4] and lifting decomposition [1]
make discrete wavelet transform (DWT) an great advance
in image processing applications [9]. Especially with lifting
scheme (LS), it is possible to realize a lossless transform
in actual hardware implementations. The same idea of
lifting scheme also inspires different approaches of lossless
transforms that eliminate quantization loss for FFT [6] and
discrete cosine transform (DCT). In previous research [5],
the lossless DCT has been demonstrated to yield comparative
performances compared to conventional implementations.
However, there is always a doubt to use lossless architectures
in communication systems because the presence of noisy
channel. Consider OFDM system shown in Fig. 1, the
inverse discrete fourier transform (IDFT) and discrete fourier
transform (DFT) pair are used to modulate and demodulate
the data constellation on the sub-carriers. The input of IDFT
at transmitter side is digitally modulated signals. The output
of the IDFT consists of the time-domain samples to be
transmitted over the real channel. Accordingly, at the receiver
side, the DFT is performed. When the channel effects such
as channel noise and inter-symbol interference are taken

1This work is supported by CWC and UC matching fund from UC
Discovery

Fig. 1. A simplified scheme for system using OFDM modulation.

into consideration, the received samples may be corrupted.
Therefore, in this paper we will analyze the quantization
loss of IntFFT and FxpFFT and simulate both designs in an
OFDM system to verify the accuracy of IntFFT.

The paper is organized as follows. The previous work
of IntFFT algorithm with memory reduction is reviewed in
section II. In section III, the proposed architecture is described.
In section IV, the analysis of quantization loss between con-
ventional complex multipliers and LS-based multipliers are
derived and compared. Section VI has two parts: the system
simulation results of FxpFFT and IntFFT are illustrated first,
and the hardware resource usage comparison is listed.

II. INTRODUCTION TO INTEGER FFT

IntFFT [6] is an integer-to-integer mapping transform where
the concept of lifting scheme used in wavelet transform is
applied to FFT algorithms. Since it only involves integer
operations, lossless transform is possible. The main idea of
IntFFT is to utilize lifting scheme in the conventional FFT by
decomposing the original complex number multiplications into
three lifting steps [6]. All the original twiddle factors in the
FFT computation are presented in lifting coefficient format.
Recall that no matter what kind of operation is performed in
the lifting path, if the same operation is performed again in
the corresponding reverse lifting path, the original input will
be reconstructed without any distortion. Hence, IntFFT is able
to preserve the perfect reconstruction property. Let t = c + js
be a complex number with magnitude one (i.e. |t| = 1) and
x = xr + jxi, the original complex multiplication can be
represented as the following matrix form:

tx = (cxr − sxi) + j(cxi + sxr)

=
[
1 j

] [
c −s
s c

] [
xr

xi

]
=

[
1 j

]
R

[
xr

xi

]
(1)
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Fig. 2. Represent original twiddle factors as three lifting steps.

Furthermore, the R matrix shown in (1) can be decomposed
into three lifting steps [1].

R =
[
c −s
s c

]
=

[
1 c−1

s
0 1

] [
1 0
s 1

] [
1 c−1

s
0 1

]
(2)

Recall the definition of the twiddle factors, s and c represent
sin θ and cos θ respectively, where θ is the angle of twid-
dle factors. Since the coefficients are scalar numbers with
magnitude one, its inverse is simply the complex conjugates.
Compared to common complex multiplier designs, the advan-
tage of lifting decomposition toward hardware implementation
is apparent: the number of real multiplications is reduced
from four to three. The original complex multiplications of
multiplying twiddle factors of its reverse can be represented
in lifting scheme form as shown in Fig. 2.

III. PROPOSED ARCHITECTURE DESIGN

The study of high-performance VLSI architecture for FFT
is an important issue for wireless LAN design since it is the
critical component in the whole system. Several different FFT
algorithms have been proposed during the past decades. In
general, these fast algorithms divide the FFT computation into
odd-half part and even-half part recursively and extract the
common twiddle factors as many as possible. The number of
required real additions and multiplications is usually used to
compare the efficiency of different FFT algorithms. In terms
of the multiplicative comparison [10], split-radix FFT is better
than all the others because it has most trivial multiplications.
However, since the non-trivial multiplications could appear in
two successive stages, the requirement of multipliers increases
when the pipeline stage design is considered. Take 16-point
FFT as example, the signal dataflow graphs (DFG) of radix-
22 FFT is illustrated in Fig. 3. Obviously we can find, for
designing of pipeline architecture, radix-22 FFT only needs
one set of complex multiplier, nevertheless split-radix FFT
needs two sets of complex multipliers. Although some efforts
have been done [10] to share the complex multipliers between
adjacent BF stages so as to reduce the usage of multipliers,
it inevitably results in additional overhead on control logic.
Hence, in this paper, the proposed architecture is based on
radix-22 FFT.

A. Memory Strategy

The memory strategy of BF stage is an important design
issue for FFT architecture. There are mainly two different
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Fig. 3. DFG of 16-point radix-22 FFT.
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Fig. 4. Feedback buffering strategy for BF core.

approaches: delay commutator (DC) [7] and delay feedback
(DF) [3]. In our architecture, the latter is adopted and depicted
in Fig. 4. In the first half cycles, the BFi core will simply store
the input samples into feedback memory. After the first N/2
cycles, the BFi core retrieves x(n) sample from feedback
memory, performs corresponding operations with the sample
x(n + N/2) and then feeds the output into next BFi+1 core.
The necessary number of memory cells is N/2, N/4 . . . etc
for the first, second stages . . . etc. Therefore, by mathematical
induction, the total required memory is N − 1.

B. Memory Reduction in OFDM system

In the widely used OFDM systems, by exploring the sym-
metric property, with the perfect reconstruction property of
IntFFT, it is possible to reduce the memory usage of FFT
at the receiver. Conventionally, the wordlength will increase
by 1 bit after every BF stages to maintain enough precisions
as that of input signals. However, since IntFFT only involves
reversible operations, it simply needs the same wordlength of
input signals as shown in Fig. 5. Therefore, in the proposed
IntFFT design, the wordlength is decreased by 1 bit after every
BF stages instead. Assume α = log2 N and the input samples
are represented as 12-bit vectors. The following equations
show the number of memory cells required in conventional
designs and proposed IntFFT, respectively.

Conventional : Mc =
α∑

i=1

N

2i
(2α + i) (3)

Proposed : Mp =
α∑

i=1

N

2i
(2α − i) (4)
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The advantages of the idea are twofold. First, obviously
the overall memory usage is decreased. Second, since the
wordlength involved in the operations is shorter, the critical
path is also reduced since the bottleneck of most FFT designs
is the delay of multipliers.

IV. ACCURACY ANALYSIS OF INTEGER FFT

In this section, the accuracy of IntFFT is theoretically
analyzed and experimentally compared to FxpFFT. Since the
round-off effect will only occur in multiplier stages, we put the
emphasis on comparing the conventional complex multiplier
to the LS-based multiplier. By modeling the quantization
loss as an additive uniform distribution random variable, the
variance of quantization loss of both conventional complex
multipliers and its equivalent LS-based multipliers can be
derived. First, for a conventional complex multiplier, assume
that x = xr + jxi represents the input sample, and t = c + js
represents the complex twiddle factor, the quantized output is
represented as follows:

Q(D) = [Q(cxr) − Q(sxi)] + j[Q(cxi) + Q(sxr)]. (5)

Consequently, the overall quantization loss and the variance of
quantization loss can be expressed as (8), where ei represents
quantization loss introduced by multipliers. For the LS-based
complex multipliers depicted in Fig. 6, the lifting coefficients
are generated from corresponding twiddle factor by p[n] and
q[n] where both p[n] and q[n] are real-valued discrete functions
and can be expressed as follows:

p[n] =
cos(θ) − 1

sin(θ)
(6)

q[n] = sin(θ) (7)

where θ = −2πn
N , and n is the index of twiddle factors. Again,

we assume all random variables are all statistically indepen-
dent and uniformly distributed. The variance of quantization
loss, fL[n], is derived in (9). For the 64-points radix-22 FFT,
fL[n] versus different decomposition types is plotted in Fig.
7. The selection criteria of decomposition are twofold: First,
fL[n] should be less than 4 so as to keep the quantization loss
lower than that of conventional complex multipliers. Second,
for the ease of hardware implementation, the position of j term
should be the same. Hence it will not lead to design overhead.
In the proposed architecture, the combination of Type (a) and
Type (b) is chosen. For 0 ≤ θ ≤ π

2 , Type (a) is adopted. For
π
2 < θ < π, Type (b) is used.

V. SIMULATION & COMPARISON

In order to verify the accuracy of IntFFT against conven-
tional FxpFFT, both algorithms are implemented in Matlab
for comparison. The system test flow is as follows: First,
a function library of binary operators is constructed as the
fundamental components. Second, the Matlab version IntFFT
is implemented to verify that the PR property is preserved
and the output agrees with the Verilog version design. Third,
the FxpFFT is implemented and the SQNR of transformed
output of both algorithms is calculated. The wordlength of
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Fig. 5. Balanced memory usage of reversible transforms.
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Fig. 6. The equivalent quantization loss model of LS-based complex
multiplier

coefficients is set to 12 bits. 10, 000 trials are made and the
average SQNR is plotted in Fig. 8. Moreover, an OFDM-based
wireless LAN system is constructed in Simulink for system
level simulation. Multipath frequency-selective fading channel
is used to evaluate the BER versus difference channel SNR
values. Various modulation schemes including QPSK (1/2) and
16QAM (1/2) and 64QAM (1/2) are simulated. From Fig. 9,
IntFFT performs as well as conventional FxpFFT even if the
noisy channel is present.
The hardware resource comparisons of several classical FFT
architecture designs are highlighted in Table I. Although the

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10
Type a
Type b
Type c
Type d

Fig. 7. fL[n] of four equivalent decompositions.
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EC [|Q(D) − D|2] = E[(e1 − e2)2 + (e3 + e4)2] = E[e2
1] + E[e2

1] + E[e2
1] + E[e2

1] = 4σ2 (8)

ELS [|Q(D) − D|2] = E[[(1 + p[n]q[n])e1 + p[n]e2 + e3]2 + (q[n]e1 + e2)2] = [(
cos(ωn) − 1

sin(ωn)
)2 + 3] · σ2 = fL[n]σ2 (9)

number of complex adders and multipliers is the same to
that of previous designs, proposed IntFFT architecture utilizes
the symmetry of transform pairs to reduce the usage of DF
memory. For a 64-pt FFT design, the DF memory usage
is reduced by 27.4% due to the reduced memory scheme.
After Matlab verification, the design is implemented in Verilog
HDL and simulated by Verilog-XL. Then it’s synthesized
by Buildgates and the AP&R flow is performed by SOC
Encounter with TSMC 0.18-µm 1P6M process. After AP&R
process, the generated SDF (standard delay format) file is back
annotated to Verilog-XL simulator to verify the correctness
of proposed design. Then, the power consumption analysis
is performed by VoltageStorm. In the design, delay feedback
memory blocks are implemented with pre-generated memory
hard macros. The final design is a pad limited design. The
core size is 500µm x 500µm, with core utilization is 80%.
The whole chip size is 975µm x 977µm, with 39 data pins,
8 power pins and 1 filler pin. The reported equivalent gate
count is 17, 983 gates. The estimated core power consumption
is 83.56 mW.

VI. CONCLUSIONS

In this paper, based on IntFFT, a radix-22 IntFFT archi-
tecture is proposed and verified. The most important feature
of IntFFT is that it can yield lossless samples as well as
obtain comparative accuracy. The required number of real
multipliers is also reduced because the lifting scheme saves
one multiplier than general complex multipliers. Moreover,
compared to FxpFFT designs, the system simulations show
that IntFFT-based architecture can also be adopted in a real
OFDM system and yield comparative BER performance in
noisy channel case.
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2Assume that the wordlength is increased by 1 bit for all previous designs.
3LS-based multiplier is adopted.

III ­ 1027


