
CUSTOM-MADE DESIGN OF A DIGITAL PID CONTROL SYSTEM

F. Fons, M. Fons, E. Cantó

Department of Electronic, Electrical and Automation Engineering

DEEEA-ETSE-URV, Rovira i Virgili University, Tarragona, Spain

ABSTRACT

In the field of real-time signal processing, like most of

automatic control systems nowadays present at the industry

and focused on PID (Proportional-Integral-Derivative)

controllers, it is common to find software-oriented solutions

based on powerful 32-bit DSP, RISC or CISC processors.

This work deals with the hardware/software co-design of a

PID coprocessor, all embedded on a system-on-chip device.

The performances reached by a platform composed of an 8-

bit MCU and a dynamically reconfigurable FPGA allow

scheduling the PID algorithm as a set of tasks executed by

both devices concurrently. Moreover, thanks to the flexible

hardware characteristics, some modules synthesized into the

FPGA are reconfigured at run-time while the rest keeps on

active. This cost-effective approach, encouraged by its

parallelism, is an alternative to commercial –both general-

purpose and specific-purpose– processors in whatever

made-to-measure engineering application.

1. INTRODUCTION

Embedded systems often must give solution to engineering

problems that simultaneously involve automatic control and

signal processing disciplines. A clear example is the design

of a digital PID controller: it faces up to not only

supervisory and decision-making algorithms but also

intensive arithmetic computing. The way of solving this

industrial issue has been evolving along the time just as the

electronic technology advances:

- Originally, general-purpose microprocessors were

designed to execute control-oriented tasks efficiently.

Despite this, its modest implementation of multipliers

through a series of shifts and adds –spending a significant

number of clock cycles– limited its computing power.

- Nonetheless, in 1982, Texas Instruments introduced the

first TMS32010 DSP processor, which incorporated a

hardware MAC unit to make possible the calculus of a

multiply-accumulate operation in a single clock cycle.

Conceptually, a DSP algorithm, commonly used in a broad

range of applications such as digital filtering or image

processing, performs an algebraic sum of products. And

from the outset, these computational requirements

influenced the architecture of DSP processors [1].

- Traditionally, microcontrollers and DSPs are viewed as

standing at opposite extremes of the processing world.

While MCUs are best suited for control applications that

require low-latency response to unsynchronized events,

DSPs have the inverse strengths and they shine in

applications where intensive mathematic computing is

demanded. A MCU can be used in arithmetic applications

but the one-operation-at-a-time nature of its ALU makes

such use less than optimal. Similarly, a DSP can be forced

into a control application but its internal architecture renders

this task inefficient in code and time. Hence, in the past,

those applications requiring a fusion of signal processing

and control-oriented algorithms were implemented by two

separate processors: DSP and MCU, what results a too

expensive solution. Some years ago, however, lots of

vendors began to offer DSP-enhanced versions of their

MCUs as an alternative to that dual-processor option and

covered thus the existing gap between general-purpose

processors and specialized DSPs. CPU families such as

ARM have ported DSP functionality to existing

microprocessor designs, borrowing the architectural features

of DSPs. Many of these hybrid processors achieve signal

processing performances comparable to that of DSPs.

- On the other hand, recently, FPGAs have been gaining

considerable relief in high-performance DSP applications

and are emerging as ideal coprocessors for standard

processors [2]. System-on-Chip or FPGA-based designs

bring some key advantages to signal processing: they

provide tremendous computational throughput by using

highly parallel architectures. In addition, its dynamic partial

reconfiguration capability extends much more the cost-

effective possibilities thanks to the silicon-area multiplexing

of the synthesizable algorithm.

This work describes the Hw/Sw co-design of a PID

controller embedded on the Atmel AT94K40 SoC. The

reasons of this election are clear: a low-power and reduced

8-bit MCU is enough to carry out the control tasks whereas

the arithmetic computing is performed in a 32-bit high-

precision data length by a dedicated and flexible FPGA.

Both concepts, control and arithmetic, are efficiently fitted

and partitioned into two devices while all the system is

packaged in a single-chip, what would not be feasible in all

other technical approaches discussed previously.

III 1020142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

Figure 1. Liquid level control system.

After this introduction, section 2 reviews the PID

control theory. Sections 3 and 4 discuss the more

outstanding aspects of the Hw/Sw development. The

experimental results are compiled in section 5. Finally,

section 6 exposes the conclusions of this work.

2. PID CONTROL TECHNIQUE

PID compensation is one of the most common forms of

closed-loop control. The general use of digital computers

allowed, already several decades ago, to increase the interest

for the modeling of continuous dynamic systems in order to,

finally, control them in a discrete way. In these systems -for

instance the control of the liquid level inside a tank depicted

in Fig. 1-, analog signals are converted into discrete digital

samples acquired cyclically at a period T and in which

calculations must be complete before the next time sample

begins [3]. A discrete PID controller can be generically

modeled by the following expression:

where e[n] represents the nth sample of the existing error

between the reference and the real value of the physical

variable under control, u[n] is the resultant stimulus to be

applied to the plant in order to compensate this error, and

Kp, Ki and Kd are the constant gains assigned to the

proportional, integral and derivative components of the

controller respectively.

Thus, the PID controller looks for compensating the

error between the desired and the effective value of the

output signal. A closed loop is inserted for this in which the

plant is self-fed by an input consisting of the sum of three

terms: a proportional factor responsible for adjusting the

control signal in the same percentage than the instantaneous

error, a derivative factor that contributes proportionally to

the error rate of change, and an integral term with the role of

eliminating the steady state error by means of integrating

the instantaneous error along the time. The three terms help

to cancel any deviation or disturbance present in the system

and maintain therefore the equilibrium, achieving an input

tracking with a dynamic response in accordance with the

fixed characteristics of the whole plant-controller [4], [5].

3. HARDWARE/SOFTWARE CO-DESIGN

Digital compensation of closed-loop systems is a

consolidated application area for embedded MCUs.

Although high-scale processors are the habitual choice for

the most demanding control applications, often these

software-based approaches do not offer enough power for

real-time specifications. Even though they are well suited

for applications where the format of data to be processed

matches their word width, their performance drops in other

cases. Moreover, the increase of cost demanded to jump

from an 8-bit processor to a bigger one because of

computational reasons gets, sometimes, not sufficiently

justifiable. Instead, small processors can handle these

performances whether they are equipped with peripheral

coprocessors to speed up the arithmetic-logic operations:

dedicated FPGA-based circuits are able to outperform the

bottleneck of processors mainly due to their inherent

customization. Under this idea, this work treats the Hw/Sw

co-design of a PID controller that, in the presence of two

control units, makes possible a concurrent execution: a

specific coprocessor assumes the multiply-add computing

effort whereas a processor takes charge of handling the data

(I/O) and reconfiguring the hardware. In fact, this

partitioning pursues to distribute the processing load

between both devices in order to look for the best-balanced

solution referring to the area-time trade-off. Therefore, a

PID cycle is scheduled in four stages making use of only a

multiplier and an adder and where their operands are time-

multiplexed through a partial reconfiguration of the FPGA.

n

j
dip neneKjeKneKnu

0

1

6037285914

Reference

Level

Float

Sensor

Pneumatic
Valve

Liquid

Tank

Input

Flow

Output

Flow

PID Controller

Real Level

Figure 3. Scheduling of the PID algorithm made with a multiplier and an adder.

En+SumEmP+I+D

n = 0

Kp·En=P -1·Em Ki·(En+SumEm)=I Kd·(En-Em)= D

En+SumEm En-Em

PRODUCT

ADDITION P+I

Kp·En -1·Em Ki·(En+SumEm) Kd·(En-Em)

En-Em P+I P+I+D

Kp·En -1·Em

En+SumEm ...

...

n = 1 n = 2

PID
Algorithm

Valve & Tank

Float

CONTROLLER PLANT

SENSOR

ref level

r(t)

error

e(t)

control

u(t)

real level

y(t)+

_

Figure 2. Block diagram of the liquid level control system.

III 1021

The self-explanatory PID pseudo-code is shown next.

 Kp=constantP
 Ki=constantI
 Kd=constantD
 Em=0 /*Em=e[n-1]*/
 SumEm=0 /*SumEm=e[0]+e[1]+...+e[n-1]*/
 Loop
 Wait (T)
 En=error /*En=e[n], Un=u[n]*/
 Un=Kp*En+Ki*(En+SumEm)+Kd*(En-Em)
 SumEm=En+SumEm
 Em=En
 End loop

Code 1. PID algorithm.

The software functions involved in this algorithm are

the PID initialization and the cyclic computation of the

output u[n] depending on the instantaneous input e[n] and

the historic and dynamic evolution of the system.

 void initPID (char Kp, char Ki, char Kd)
 long cyclicPIDTask (char En)

Code 2. PID software function prototypes.

The established sampling period T can be programmed

by the MCU through a cyclic timer interrupt. In order to

operate the coprocessor, data are loaded first into the input

registers by the MCU. The FPGA coprocessor is then

instructed to compute the PID along several partial

reconfigurations. Finally, upon completion of the PID cycle,

the results may be read from the output register and all this

cyclic process is started again and repeated indefinitely.

4. PID COPROCESSOR

The PID controller has been developed in the AT94K40

system-on-chip. This monolithic device, also known as

FPSLIC (Field Programmable System Level Integrated

Circuit), combines in the same package an 8-bit AVR RISC

core processor with its peripherals, a 40 kgates AT40K40

SRAM-based FPGA as well as 36 kbytes Dual-Port SRAM

shared between MCU-FPGA [6]. A useful characteristic of

this device is its Cache Logic ability, what allows either the

same FPGA or the AVR, through an specific configuration

interface, to reconfigure on-the-fly whichever part of the

FPGA memory, at a bit-level granularity, while the rest of

device continues active [7]. Our design takes full advantage

of these performances in order to optimize the coprocessor.

Concerning the hardware design, the involved computing

units -an 8x24-bit multiplier and a 32-bit adder- are hard

macros generated by the Atmel IDS Macro Generator tool,

which provides optimized technology-dependant modules.

Both arithmetic integer units have about the same critical

path, what made feasible to schedule a parallel processing

of these two operations working at the same frequency.

4.1. Dynamic Partial Reconfiguration

As depicted in Fig. 3, a PID cycle is executed in four steps

and a multiplication and an addition are performed in each

of them while the operands are multiplexed at run-time by

the MCU through partial reconfigurations of the FPGA.

Figure 5. Dynamic multiplexing of the MAC operands.

In static designs, a logic function updates its outputs

when any of its inputs changes. Our dynamic design, on the

contrary, keeps the inputs tied to ground and the outputs

change through reconfiguring the LUTs of the logic cell. In

this way, only some logic resources evolve to take effect on

the lines oe shown in Fig. 4 and Fig. 5.

DR-Decoder
LUT 2x2

Truth Table
 In Reconf. Out
 ba hg hg hg hg
 00 00 01 10 11
 01 01 00 11 10
 10 10 11 00 01
 11 11 10 01 00

Output Enable
ROM 2x4

Truth Table
 In Out
 ba nkhg
 00 0001
 01 0010
 10 0100
 11 1000

OE(3)

OE(2)

OE(1)

OE(0)

IN(1)

IN(0)

B

A

H

G

RECONF
G = a / not a
H = b / not b

Figure 4. PID coprocessor architecture.

 En-Em

MCU

PRODUCT

 Kd

ADDITION

I

RECONF

Frequency Divider

D_FPGA

 Ki

 -1

Kp

 En+SumEm

 Em

En P+I

P

 SumEm

 D

P+I+D

8-bit 24-bit

32-bit

32-bit 32-bit

32-bit

CLK

DATAIN

DATAOUT

FPGAY

FPGAX

FPGAZ

FPGAD

 - Em

OE(3)

OE(2)

OE(1)

OE(0)

III 1022

5. EXPERIMENTAL RESULTS

The PID coprocessor has been described in VHDL and C

languages. The hardware design is split into a static skeleton

and a dynamic part which is updated each reconfiguration

cycle: the PID controller is reconfigured with only a latency

of 4 clocks, what allows to switch the operands and the

result of both multiplier and adder modules. Thus, a PID

cycle is performed in 34 clocks cycles: 16 for dynamic

partial reconfiguration and 18 for MCU-FPGA data transfer.

Platform (Op. System) Time Development Tools

Pentium 4 @ 2.66 GHz

(Windows XP)

1350 ns Visual C++ 6.0

(Win32)

AMD K6-2 @ 450 MHz

(MS-DOS)

1840 ns Borland C++ 3.1

(MS-DOS)

AMD K6-2 @ 450 MHz

(Windows 98)

1550 ns Visual C++ 6.0

(Win 32)

80C188EB @ 25 MHz

(Embedded system)

58000 ns Borland C++ 3.1

(MS-DOS)

AT94K40 SoC @ 12.5 MHz

(Hw/Sw development board)

2720 ns Atmel System Designer

IAR compiler

Table 1. PID cycle performance evaluation.

A study focused on software-based computing showed

that the time involved in the integer processing of a PID

cycle would be unacceptable in most of high-speed digital

control system applications. Instead, a Hw/Sw co-design

improves the performance as depicted in Table 1 taking into

account the clock frequency of the different tested

platforms. Due to the existing area-time trade-off and given

that the FPGA cost is made conditional on its size, our

design pursues to distribute the load of the MCU and the

FPGA, avoiding thus whatever bottleneck and giving a

balanced serial-parallel implementation through a four-

stages scheduling. In this way, our implementation makes

possible to reconfigure the PID coprocessor at run-time

spending a few clocks, what keeps practically invariable the

overhead of the application and validates the area-saving

choice relating to place only a multiplier and an adder.

Hardware and software parts have been co-simulated

together by the EDA System Designer tool. Finally, the

resultant bitstream (MCU program code and FPGA

configuration) has been downloaded into a prototype board

that we developed for carrying out an automatic test. This

board basically consists of the SoC device, an external

Eeprom memory that stores the bitstream and a serial RS232

transceiver connected to the UART of the MCU. Through

this serial interface, the developer, from a host PC, is able to

stimulate the system by entering input data and analyze how

the system responds according to its tuned PID parameters.

Continuous PID cycles can be executed; at the same time

that the system runs, the output data of the PID controller

are compared with the same results computed by the PC

software application that also implements the PID algorithm

to double check and verify the proper behavior of our

Hw/Sw design.

6. CONCLUSIONS

Many field applications demand to merge control and

computing processes. While a low-cost CPU can manage

the control tasks, a powerful ALU is required to accelerate

the computing operations. These opposite requirements are

solved in a DSP processor by enlarging the data-path to 16

or 32 bits. Our approach is inspired on SoC technology

since it permits to split these control and computing

resources more efficiently: an 8-bit MCU handles the data-

path whereas a dedicated 32-bit ALU/MAC takes charge of

the arithmetic computing. Moreover, flexible FPGAs permit

to optimize its area by multiplexing strategies. A generic

prototype of PID controller has been implemented, showing

all the methodology and design flow. This Hw/Sw solution

has been compared with other software-based approaches

and the good performance obtained makes it suitable for

being ported to real industrial applications.

REFERENCES

[1] Jennifer Eyre, Jeff Bier, “The Evolution of DSP Processors,”

Berkeley Design Technology Inc., 2000.

[2] Steve Zack, Suhel Dhanani, “DSP Co-Processing in FPGAs:

Embedding High-Performance, Low-Cost DSP Functions,”

www.xilinx.com, 2004.

[3] J. Murphree, B. Brzezinski, J. K. Parker, “Using a Fixed-

Point DSP as a PID Controller,” American Society for Eng.

Education Annual Conf. & Exposition, session 2359, 2002.

[4] Charles L. Phillips, H. Troy Nagle Jr, Digital Control System

Analysis and Design, Prentice-Hall, 1995.

[5] David Wilson, “16-Bit DSP Servo Control with the

MC68HC16Z1,” www.freescale.com, 1996.

[6] Atmel Corp., “AT94K Series Field Programmable System

Level Integrated Circuit,” www.atmel.com, 2002.

[7] Atmel Corp., “AT94K Series Cache Logic (Mode 4)

Configuration,” www.atmel.com, 2001.

Figure 6. Prototype board developed.

III 1023

