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ABSTRACT 

In the field of real-time signal processing, like most of 

automatic control systems nowadays present at the industry 

and focused on PID (Proportional-Integral-Derivative) 

controllers, it is common to find software-oriented solutions 

based on powerful 32-bit DSP, RISC or CISC processors. 

This work deals with the hardware/software co-design of a 

PID coprocessor, all embedded on a system-on-chip device. 

The performances reached by a platform composed of an 8-

bit MCU and a dynamically reconfigurable FPGA allow 

scheduling the PID algorithm as a set of tasks executed by 

both devices concurrently. Moreover, thanks to the flexible 

hardware characteristics, some modules synthesized into the 

FPGA are reconfigured at run-time while the rest keeps on 

active. This cost-effective approach, encouraged by its 

parallelism, is an alternative to commercial –both general-

purpose and specific-purpose– processors in whatever 

made-to-measure engineering application. 

1. INTRODUCTION 

Embedded systems often must give solution to engineering 

problems that simultaneously involve automatic control and 

signal processing disciplines. A clear example is the design 

of a digital PID controller: it faces up to not only 

supervisory and decision-making algorithms but also 

intensive arithmetic computing. The way of solving this 

industrial issue has been evolving along the time just as the 

electronic technology advances: 

- Originally, general-purpose microprocessors were 

designed to execute control-oriented tasks efficiently. 

Despite this, its modest implementation of multipliers 

through a series of shifts and adds –spending a significant 

number of clock cycles– limited its computing power. 

- Nonetheless, in 1982, Texas Instruments introduced the 

first TMS32010 DSP processor, which incorporated a 

hardware MAC unit to make possible the calculus of a 

multiply-accumulate operation in a single clock cycle. 

Conceptually, a DSP algorithm, commonly used in a broad 

range of applications such as digital filtering or image 

processing, performs an algebraic sum of products. And 

from the outset, these computational requirements 

influenced the architecture of DSP processors [1]. 

- Traditionally, microcontrollers and DSPs are viewed as 

standing at opposite extremes of the processing world. 

While MCUs are best suited for control applications that 

require low-latency response to unsynchronized events, 

DSPs have the inverse strengths and they shine in 

applications where intensive mathematic computing is 

demanded. A MCU can be used in arithmetic applications 

but the one-operation-at-a-time nature of its ALU makes 

such use less than optimal. Similarly, a DSP can be forced 

into a control application but its internal architecture renders 

this task inefficient in code and time. Hence, in the past, 

those applications requiring a fusion of signal processing 

and control-oriented algorithms were implemented by two 

separate processors: DSP and MCU, what results a too 

expensive solution. Some years ago, however, lots of 

vendors began to offer DSP-enhanced versions of their 

MCUs as an alternative to that dual-processor option and 

covered thus the existing gap between general-purpose 

processors and specialized DSPs. CPU families such as 

ARM have ported DSP functionality to existing 

microprocessor designs, borrowing the architectural features 

of DSPs. Many of these hybrid processors achieve signal 

processing performances comparable to that of DSPs. 

- On the other hand, recently, FPGAs have been gaining 

considerable relief in high-performance DSP applications 

and are emerging as ideal coprocessors for standard 

processors [2]. System-on-Chip or FPGA-based designs 

bring some key advantages to signal processing: they 

provide tremendous computational throughput by using 

highly parallel architectures. In addition, its dynamic partial 

reconfiguration capability extends much more the cost-

effective possibilities thanks to the silicon-area multiplexing 

of the synthesizable algorithm. 

This work describes the Hw/Sw co-design of a PID 

controller embedded on the Atmel AT94K40 SoC. The 

reasons of this election are clear: a low-power and reduced 

8-bit MCU is enough to carry out the control tasks whereas 

the arithmetic computing is performed in a 32-bit high-

precision data length by a dedicated and flexible FPGA. 

Both concepts, control and arithmetic, are efficiently fitted 

and partitioned into two devices while all the system is 

packaged in a single-chip, what would not be feasible in all 

other technical approaches discussed previously. 

III  1020142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



Figure 1. Liquid level control system. 

After this introduction, section 2 reviews the PID 

control theory. Sections 3 and 4 discuss the more 

outstanding aspects of the Hw/Sw development. The 

experimental results are compiled in section 5. Finally, 

section 6 exposes the conclusions of this work. 

2. PID CONTROL TECHNIQUE 

PID compensation is one of the most common forms of 

closed-loop control. The general use of digital computers 

allowed, already several decades ago, to increase the interest 

for the modeling of continuous dynamic systems in order to, 

finally, control them in a discrete way. In these systems -for 

instance the control of the liquid level inside a tank depicted 

in Fig. 1-, analog signals are converted into discrete digital 

samples acquired cyclically at a period T and in which 

calculations must be complete before the next time sample 

begins [3]. A discrete PID controller can be generically 

modeled by the following expression: 

where e[n] represents the nth sample of the existing error 

between the reference and the real value of the physical 

variable under control, u[n] is the resultant stimulus to be 

applied to the plant in order to compensate this error, and 

Kp, Ki and Kd are the constant gains assigned to the 

proportional, integral and derivative components of the 

controller respectively. 

Thus, the PID controller looks for compensating the 

error between the desired and the effective value of the 

output signal. A closed loop is inserted for this in which the 

plant is self-fed by an input consisting of the sum of three 

terms: a proportional factor responsible for adjusting the 

control signal in the same percentage than the instantaneous 

error, a derivative factor that contributes proportionally to 

the error rate of change, and an integral term with the role of 

eliminating the steady state error by means of integrating 

the instantaneous error along the time. The three terms help 

to cancel any deviation or disturbance present in the system 

and maintain therefore the equilibrium, achieving an input 

tracking with a dynamic response in accordance with the 

fixed characteristics of the whole plant-controller [4], [5]. 

3. HARDWARE/SOFTWARE CO-DESIGN 

Digital compensation of closed-loop systems is a 

consolidated application area for embedded MCUs. 

Although high-scale processors are the habitual choice for 

the most demanding control applications, often these 

software-based approaches do not offer enough power for 

real-time specifications. Even though they are well suited 

for applications where the format of data to be processed 

matches their word width, their performance drops in other 

cases. Moreover, the increase of cost demanded to jump 

from an 8-bit processor to a bigger one because of 

computational reasons gets, sometimes, not sufficiently 

justifiable. Instead, small processors can handle these 

performances whether they are equipped with peripheral 

coprocessors to speed up the arithmetic-logic operations: 

dedicated FPGA-based circuits are able to outperform the 

bottleneck of processors mainly due to their inherent 

customization. Under this idea, this work treats the Hw/Sw 

co-design of a PID controller that, in the presence of two 

control units, makes possible a concurrent execution: a 

specific coprocessor assumes the multiply-add computing 

effort whereas a processor takes charge of handling the data 

(I/O) and reconfiguring the hardware. In fact, this 

partitioning pursues to distribute the processing load 

between both devices in order to look for the best-balanced 

solution referring to the area-time trade-off. Therefore, a 

PID cycle is scheduled in four stages making use of only a 

multiplier and an adder and where their operands are time-

multiplexed through a partial reconfiguration of the FPGA. 
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Figure 3. Scheduling of the PID algorithm made with a multiplier and an adder. 
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Figure 2. Block diagram of the liquid level control system. 
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The self-explanatory PID pseudo-code is shown next. 

 Kp=constantP 
 Ki=constantI 
 Kd=constantD 
 Em=0        /*Em=e[n-1]*/ 
 SumEm=0     /*SumEm=e[0]+e[1]+...+e[n-1]*/ 
 Loop 
   Wait (T) 
   En=error  /*En=e[n], Un=u[n]*/ 
   Un=Kp*En+Ki*(En+SumEm)+Kd*(En-Em) 
   SumEm=En+SumEm 
   Em=En 
 End loop 

Code 1. PID algorithm.

The software functions involved in this algorithm are 

the PID initialization and the cyclic computation of the 

output u[n] depending on the instantaneous input e[n] and 

the historic and dynamic evolution of the system. 

 void initPID (char Kp, char Ki, char Kd) 
 long cyclicPIDTask (char En) 

Code 2. PID software function prototypes. 

The established sampling period T can be programmed 

by the MCU through a cyclic timer interrupt. In order to 

operate the coprocessor, data are loaded first into the input 

registers by the MCU. The FPGA coprocessor is then 

instructed to compute the PID along several partial 

reconfigurations. Finally, upon completion of the PID cycle, 

the results may be read from the output register and all this 

cyclic process is started again and repeated indefinitely. 

4. PID COPROCESSOR 

The PID controller has been developed in the AT94K40 

system-on-chip. This monolithic device, also known as 

FPSLIC (Field Programmable System Level Integrated 

Circuit), combines in the same package an 8-bit AVR RISC 

core processor with its peripherals, a 40 kgates AT40K40 

SRAM-based FPGA as well as 36 kbytes Dual-Port SRAM 

shared between MCU-FPGA [6]. A useful characteristic of 

this device is its Cache Logic ability, what allows either the 

same FPGA or the AVR, through an specific configuration 

interface, to reconfigure on-the-fly whichever part of the 

FPGA memory, at a bit-level granularity, while the rest of 

device continues active [7]. Our design takes full advantage 

of these performances in order to optimize the coprocessor. 

Concerning the hardware design, the involved computing 

units -an 8x24-bit multiplier and a 32-bit adder- are hard 

macros generated by the Atmel IDS Macro Generator tool, 

which provides optimized technology-dependant modules. 

Both arithmetic integer units have about the same critical 

path, what made feasible to schedule a parallel processing 

of these two operations working at the same frequency. 

4.1. Dynamic Partial Reconfiguration 

As depicted in Fig. 3, a PID cycle is executed in four steps 

and a multiplication and an addition are performed in each 

of them while the operands are multiplexed at run-time by 

the MCU through partial reconfigurations of the FPGA. 

Figure 5. Dynamic multiplexing of the MAC operands. 

In static designs, a logic function updates its outputs 

when any of its inputs changes. Our dynamic design, on the 

contrary, keeps the inputs tied to ground and the outputs 

change through reconfiguring the LUTs of the logic cell. In 

this way, only some logic resources evolve to take effect on 

the lines oe shown in Fig. 4 and Fig. 5.
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5. EXPERIMENTAL RESULTS 

The PID coprocessor has been described in VHDL and C 

languages. The hardware design is split into a static skeleton 

and a dynamic part which is updated each reconfiguration 

cycle: the PID controller is reconfigured with only a latency 

of 4 clocks, what allows to switch the operands and the 

result of both multiplier and adder modules. Thus, a PID 

cycle is performed in 34 clocks cycles: 16 for dynamic 

partial reconfiguration and 18 for MCU-FPGA data transfer.  

Platform (Op. System) Time Development Tools 

Pentium 4 @ 2.66 GHz 

(Windows XP) 

1350 ns Visual C++ 6.0 

(Win32) 

AMD K6-2 @ 450 MHz 

(MS-DOS) 

1840 ns Borland C++ 3.1 

(MS-DOS) 

AMD K6-2 @ 450 MHz 

(Windows 98) 

1550 ns Visual C++ 6.0 

(Win 32) 

80C188EB @ 25 MHz 

(Embedded system) 

58000 ns Borland C++ 3.1 

(MS-DOS) 

AT94K40 SoC @ 12.5 MHz 

(Hw/Sw development board) 

2720 ns Atmel System Designer 

IAR compiler 

Table 1. PID cycle performance evaluation. 

A study focused on software-based computing showed 

that the time involved in the integer processing of a PID 

cycle would be unacceptable in most of high-speed digital 

control system applications. Instead, a Hw/Sw co-design 

improves the performance as depicted in Table 1 taking into 

account the clock frequency of the different tested 

platforms. Due to the existing area-time trade-off and given 

that the FPGA cost is made conditional on its size, our 

design pursues to distribute the load of the MCU and the 

FPGA, avoiding thus whatever bottleneck and giving a 

balanced serial-parallel implementation through a four-

stages scheduling. In this way, our implementation makes 

possible to reconfigure the PID coprocessor at run-time 

spending a few clocks, what keeps practically invariable the 

overhead of the application and validates the area-saving 

choice relating to place only a multiplier and an adder. 

Hardware and software parts have been co-simulated 

together by the EDA System Designer tool. Finally, the 

resultant bitstream (MCU program code and FPGA 

configuration) has been downloaded into a prototype board 

that we developed for carrying out an automatic test. This 

board basically consists of the SoC device, an external 

Eeprom memory that stores the bitstream and a serial RS232 

transceiver connected to the UART of the MCU. Through 

this serial interface, the developer, from a host PC, is able to 

stimulate the system by entering input data and analyze how 

the system responds according to its tuned PID parameters. 

Continuous PID cycles can be executed; at the same time 

that the system runs, the output data of the PID controller 

are compared with the same results computed by the PC 

software application that also implements the PID algorithm 

to double check and verify the proper behavior of our 

Hw/Sw design. 

6. CONCLUSIONS

Many field applications demand to merge control and 

computing processes. While a low-cost CPU can manage 

the control tasks, a powerful ALU is required to accelerate 

the computing operations. These opposite requirements are 

solved in a DSP processor by enlarging the data-path to 16 

or 32 bits. Our approach is inspired on SoC technology 

since it permits to split these control and computing 

resources more efficiently: an 8-bit MCU handles the data-

path whereas a dedicated 32-bit ALU/MAC takes charge of 

the arithmetic computing. Moreover, flexible FPGAs permit 

to optimize its area by multiplexing strategies. A generic 

prototype of PID controller has been implemented, showing 

all the methodology and design flow. This Hw/Sw solution 

has been compared with other software-based approaches 

and the good performance obtained makes it suitable for 

being ported to real industrial applications. 
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Figure 6. Prototype board developed. 
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