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ABSTRACT

This paper discusses the suitability of reconfigurable computing to

speedup classification problems using Nearest Neighbour (1NN) clas-

sifier. 1NN classifier is widely used in the literature especially in

real-time applications such as face recognition, on-line hand-written

character recognition and medical applications where the performance

enhancement in terms of speed is desirable. To evaluate the effec-

tiveness of our implementation on Field Programmable Gate Ar-

rays (FPGAs), experiments were carried out on two medical data

sets. Results have shown that the classification accuracy is exactly

same for both FPGAs and microprocessor (µP) based solutions with

FPGA has superior speed performances.

1. INTRODUCTION

The nearest-neighbour classifier (1NN) [1] has long been used in

pattern recognition, exploratory data analysis, and data mining prob-

lems and has been proved to have good classification performance

on a wide range of real-world data sets [2, 3]. 1NN classifier is

also widely used in the literature for real-time applications such as

face recognition [4, 5] and medical applications [6] where the per-

formance enhancement in terms of speed is desirable. For all these

application, a high-speed custom hardware is needed.

Although 1NN classifier is simple and provides a reasonable

classification performance in most applications, the major drawback

is that it is computationally intensive [7]. In order to find the near-

est neighbour, a distance metric between the test sample and large

number of samples in the training set is computed, thus making this

approach quite computationally intensive.

The aim of this paper is to propose and implement efficient par-

allel architectures for 1NN classifier on Field Programmable Gate

Arrays (FPGAs). FPGAs were originally developed for hardware

circuit designs, however, FPGAs have become so dense and fast that

they can be used as powerful reconfigurable computing systems for

image processing algorithms [8, 9, 10, 11, 12]. Furthermore in this

paper, the distance metric for 1NN classifier is mathematically sim-

plified to save hardware resources and clock cycles.

The paper is organised as follows. Section 2 reviews existing

hardware solutions for the nearest neighbour classifier. Section 3

mathematically reviews and simplified distance metric for 1NN clas-

sifier. Section 4 describes the proposed hardware architectures for

1NN classifier followed by experiments and discussion in Section 5.

Section 6 concludes the paper.

2. PREVIOUS HARDWARE APPROACHES

Several hardware accelerators for the computation of the nearest

neighbour rule have been proposed. These special-purpose systems

are based on different approaches and have been optimised for spe-

cific classification problems. Zhou et al [13] describes a generic and

fast classifier that uses a binary Correlation Matrix Memory (CMM)

neural network for storing and matching a large amount of patterns

efficiently, and a KNN rule for the classification. The CMM clas-

sifier has been tested on several benchmarks and when compared

with a simple KNN rule, it gave less than 1% lower accuracy with a

speed-up of over 4 times.

A new parallel NN classifier based on a 2-D Cellular Automa-

tion (CA) architecture was presented by Tzionas et al [14]. This

approach is well suited for 2-D feature space and uses a network of

processors to store the feature space. The main drawbacks are the

large silicon area and the limited set of applications [7].

Lipman et al [15] proposed a parallel architecture for KNN clas-

sifier. Training samples are stored in memory and then the distances

are computed and sorted in parallel. 64 distance calculation proces-

sors were used in a single chip. Multiple chips were required for

more than 64 training samples. The main drawback is the use of a

simple distance metric and the utilisation of multiple chips to store

the training samples. A complete VLSI system for KNN classifica-

tion was proposed by Ferrari et al [7]. The system adopts the exhaus-

tive search by processing all the samples in the training database.

Two different classification problems for handwritten recognition

were chosen as benchmarks. The relative error is less than 1% us-

ing 16-bit fixed point arithmetic when compared with floating point

calculation for handwritten-digit.

All the architectures proposed in the literature are either not pro-

viding accurate accuracy (For example, 1% error is unacceptable in

medical data sets when compared with software approaches) or us-

ing a simple distance metric with large silicon area. A high-speed

reconfigurable hardware is needed that provides accurate accuracy

when compared with software approaches along with low cost solu-

tion. The aim of this paper is to use FPGA technology to speed-up

the classification using 1NN classifier without any relative error.

3. DISTANCE METRIC FOR
NEAREST NEIGHBOUR CLASSIFIER

In this work, neighbours are calculated using a squared Euclidean

distance defined as: D(x, y) =
Pf

i=1(xi − yi)
2 where x and y are

two input vectors and f is the number of features.
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Let x is the input vector for the test sample with f features and

y1, y2, y3, ...., yn are the input vectors of training samples of size

n. The squared Euclidean distance of a test sample with a training

sample vector y1 is calculated as follows:

D(x, y1) = (x1 − y11)
2 + (x2 − y12)

2 + .. + (xf − y1f )2

= x2
1 − 2x1y11 + y2

11 + x2
2 − 2x2y12 + y2

12 +

.. + x2
f − 2xfy1f + y2

1f

= x2
1 + x2

2 + .. + x2
f + x1Y11 + x2Y12

+.. + xfY1f + K1 (1)

where, Y11 = −2y11, Y12 = −2y12, Y1f = −2y1f and K1 =
y2
11 + y2

12 + .. + y2
1f . It is worth noting that y11, y12, .., y1f are

constants.

Similarly;

D(x, y2) = x2
1 + x2

2 + ... + x2
f + x1Y21 + x2Y22 +

... + xfY2f + K2 (2)

...

...

D(x, yn) = x2
1 + x2

2 + ... + x2
f + x1Yn1 + x2Yn2 +

... + xfYnf + Kn (3)

Finally, a test sample is assigned to the class with

min(D(x, y1), D(x, y2), .... , D(x, yn)). In equations 1-3, the term

(x2
1 + x2

2 + ... + x2
f ) is a common expression and by ignoring this

expression, there is no effect on the final result as the minimum term

in set {D(x, y1), D(x, y2), .... , D(x, yn)} will remain the same.

Thus, the distance is calculated as follows:

D(x, y1) = x1Y11 + x2Y12 + ... + xfY1f + K1 (4)

D(x, y2) = x1Y21 + x2Y22 + ... + xfY2f + K2 (5)

...

...

D(x, yn) = x1Yn1 + x2Yn2 + ... + xfYnf + Kn (6)

The simplification of equations 1-3 to equations 4-6 results in

an efficient hardware by avoiding many substraction operations and

using only constant multipliers instead of variable multipliers. For

example, in equation 1, f multiplications, f additions, and f sub-

stractions are required, while in equation 4, only f constant multi-

plications, and f + 1 additions are required. Overall, with 1 training

sample, f − 1 substraction are saved while for n training samples,

n ∗ (f − 1) substraction are avoided, thus simultaneously using less

hardware and saving clock cycles.

4. HARDWARE ARCHITECTURE FOR 1NN

The major steps for finding the class of unknown sample using 1NN

are shown in Figure 1. At its most basic level, the programming

model for classifying unknown sample is a host processor (typically

a PC running at 2.4GHz Pentium 4-based system, programmed in

C++). The host machine is working as a control unit and is respon-

sible to load features vector in the external memory (SRAMs) of the

FPGA.

The 1NN algorithm has two major computational phases: the

distance metric calculation and the computation of the minimum dis-

tance. Distance calculations can be easily parallelised by assigning

a processing element to each training sample. Figure 2 shows the

Assign unknown sample to
class with

min(Dx,y1, Dx,y2, ..... , Dx,yN)

Input (Unknown Sample)

Labelled Sample

Calculate Distances
(Dx,y1, Dx,y2, ..... , Dx,yN)

Fig. 1. Major steps during nearest neighbour classifier for finding the class
of unknown sample.

hardware architecture for 1NN with feature vector of size F . The

original feature vector (unknown sample) is loaded into the external

memory (SRAM-BANK0) of the FPGA board. The training sam-

ples are stored in F parallel Block ROMs. At each iteration, the

features of an unknown sample are multiplied by the corresponding

features of F training samples. Thus, F Processing Elements (PEs)

are executed in parallel to perform the multiplication and accumula-

tion with the accumulators in PEs are initialized with constants (K1,

K2, ..... , KN ). A set of comparators are then used to find the min-

imum distance and simultaneously, the features of unknown sample

are multiplied by F new training samples of the next iteration. The

process is iterated N/F times where N is the number of samples.

Finally, the unknown sample is assigned to the class having the min-

imum distance.

F

BANK0
0

Register

Block
ROM

PE1
Block
ROM

PE2
Block
ROM

PEF

X +

Loop N/F Times

D(x,ys+1)

Comparator
D(x,y) = minimum{D(x,y), D(x,y1), D(x,y2, ... , D(x,yF)}

Finish

Label unknown sample x with class of  sample y

D(x,yF) =x1Yf1 + x2Yf2 + ...+ xfYnf + Kf

assuming intially s = 0

D(x,ys+2) D(x,ys+F)

s = s + F

Fig. 2. Hardware Architecture for Nearest Neither Classifier. F = Number
of Features. N = Number of Training Samples. Initially s = 0.

In addition to parallelism, pipelining is also used in the imple-

mentation to improve the performance. Figure 3 demonstrates an

example how pipelining is used for calculating the distance metric.

It can be clearly seen from the figure that before pipelining 4 ∗ F
clock cycles are required for distance calculation of a training sam-

ple with a delay of 1 clock cycle for the multiplication operation
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and F features. This delay has been eliminated by using pipelining

where the number of clock cycles has been reduced to F + 3.

CC

R * D + R * D + R * D +

1 2 3 4 5 6 7 8 4*F

R R

1 2CC

R

F

* * *

D D D

A A A

F+1 F+2 F+3

Without Pipelining

With Pipelining

Fig. 3. An example showing pipelining for distance calculation of a training
sample. R = Read, *=Multiplication, D=Delay, +=Add, CC=Clock Cycles.

The proposed architecture has been implemented by using Handel-

C [16] and Xilinx Coregen [17]. Handel-C is a truly innovative C-

like language for implementing algorithms in hardware. The out-

put from Handel-C is a file that is used to create the configuration

data for the FPGA. The target hardware for this work is Celoxica

RC1000-PP PCI based FPGA development board equipped with a

Xilinx XCV2000E Virtex FPGA having 19,200 slices and 655,360

bits of block RAM, and four banks of static RAM with 2MB each

[16, 17].

5. EXPERIMENTS AND DISCUSSION

To evaluate the effectiveness of our implementation on FPGAs, ex-

periments were carried out on two medical data sets reported in

[18, 6]. A short description is mentioned below:

• Breast Cancer data set: This data set Wisconsin Diagnostic

Breast Cancer (WDBC) [18] consists of 569 samples and di-

vided into two 2 groups: 357 benign and 212 malignant. The

number of features is 30.

• Prostate Cancer data set: This data set is derived from pro-

static nuclei extracted from prostate tissue [6]. This data set

consists of 230 samples and labeled into 3 classes: 63 cases

of Benign Prostatic Hyperplasia (BPH), 79 cases of Prostatic

Intraepithelial Neoplasia (PIN) and 88 cases of Prostatic Car-

cinoma (PCa). The number of features is 13.

Due to the different range of values for the original features,

the input feature values are normalised over the range [1,10] using

Equation 7 [19]. Normalising the data is important to ensure that the

distance measure allocates equal weight to each variable. Without

normalization, the variable with the largest scale will dominate the

measure. Leave-one-out method has been used for cross-validation.

x
′
i,j = (

xi,j − mink=1...nx(k,j)

maxk=1...nx(k,j) − mink=1...nx(k,j)

∗ 9) + 1 (7)

where xi,j is the jth feature of the ith pattern, x
′
i,j is the correspond-

ing normalized feature, and n is the total number of patterns.

Tables 1 and 2 show the overall classification error for the breast

and prostate cancer data sets respectively. The classification error is

exactly the same for both µ-P and FPGA based solutions when using

14-bit and 10-bit numbers. For the breast cancer data set, there is a

difference in classification accuracy when 6-bit fixed point numbers

are used. For prostate cancer data set, there is difference in classi-

fication accuracy when 2-bit fixed point numbers are used. This is

mainly due to some loss of arithmetic precision during the imple-

mentation. Although, the classification accuracy is improved using

6-bit fixed point numbers in breast cancer data set, our main aim

is the comparison of the classification accuracy between hardware

and software approaches. From the results, it can be concluded that,

for up to 10-bit fixed point numbers, a hardware implementation is

suitable for these type of data sets.

Table 1. Comparison of Classification Error using µ-P and FPGA for breast
cancer. CL = Classified as, B=Benign, M=Malignant, E=Error, O = Overall.
FP = Floating Point, FxP = Fixed Point. F =30.

CL µ-P/FPGA FPGA
(32-bit FP/14/10) (6-bit FxP)

B M E(%) B M E(%)

B 342 15 4.09 344 13 3.78
M 12 200 5.66 12 200 5.66
O 4.88 4.72

Table 2. Comparison of Classification Error using µ-P and FPGA for
prostate cancer. CL = Classified as, B= BPH, P= PIN, C=Cancer, E=Error, O
= Overall. FP = Floating Point, FxP = Fixed Point. F =13.

CL µ-P/FPGA FPGA
(32-bit FP, 14/10/6-bit FxP) (2-bit FxP)

B P C E(%) B P C E(%)

B 62 0 1 1.59 61 0 2 3.17
P 0 79 0 0 1 78 0 1.26
C 1 0 87 1.14 5 2 81 7.95

O 0.91 4.13

Table 3 shows the execution time comparison between an µP-

based and an FPGA-based implementation of 1NN classifier for breast

and prostate cancer data sets using one test sample. The result shows

that the performance of an FPGA implementation is approximately

15, 38 and 47 times faster than Pentium 4 PC using Virtex-E, Virtex-

2, and Virtex-2P respectively for breast cancer data set. For the

prostate cancer, the performance of an FPGA implementation is ap-

proximately 6, 17, and 19 times faster than µ-P using Virtex E,

Virtex-2, and Virtex-2P, respectively. This improvement in the per-

formance depends upon 2 factors: feature vector size (F ) and the

number of training samples (N ). For the breast cancer problem,

F = 30, and N = 569, thus, 30 parallel operations (multiplications

and additions) are performed at each iteration with the maximum

number of iterations of 19. Because of the larger values of F and N ,

the performance of FPGA is best in the breast cancer data set when

compared with prostate cancer data set. Tables 4-5 show the clock

speed and the area used for different fixed point implementations on

FPGAs using various device families. Note that the implementations

using Virtex-2 and Virtex-2P result in the same area in terms of the

number of CLBs.

5.1. Block RAM vs Number of Training Samples

The major problem in this proposed architecture is the size of Block

RAM. The number of training samples depends upon the size of
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Table 3. Execution Time in µsec between µ-P and FPGA implementation
of 1NN classifier using Xilinx Device Families. BC = Breast Cancer, PC
= Prostate Cancer, DF = Device Family, FP = Floating Point, FxP = Fixed
Point.

Data set µ-P DF FPGA FPGA Speed-Up
(14-bit FxP) (10-bit FxP)

BC 180.1
Virtex-E 13.5 11.8 13.34 - 15.26
Virtex-2 7.50 4.71 24.0 - 38.21

Virtex-2P 6.27 3.83 28.72 - 47.01

PC 32.5
Virtex-E 6.13 5.23 5.30 - 6.21
Virtex-2 3.41 2.08 9.52 - 15.6

Virtex-2P 2.85 1.75 11.4 - 18.6

block RAM within the FPGA device. One possible solution is the

use of dedicated RAMs to store the training samples as proposed

by [15, 7]. However, new advancement in FPGA technology has

lead to an increase of the size of BLOCK RAM. For example, the

Xilinx Virtex-4 FPGAs supports up to 9, 936Kb of Blocks RAM as

compared to only 640Kb of Block RAM in Virtex-E devices used

in this paper. It is estimated that the new Virtex-4 devices can store

up to 8000 training samples with each training sample consisting of

feature vector of size 16. Thus, FPGAs can be used as a co-processor

in many medical data sets as the number of training samples are less

than 8000 in most medical data sets.

Table 4. Clock Speed and area used for classification using 1NN for breast
cancer data set using various Xilinx Device Families. F = 30.

Device Family FPGA FPGA
(14-bit) (10-bit)

Virtex-E

Clock Speed (MHz) 50.0 57.2
Number of occupied Slices 10,967 8,061

Total number of 4 input LUTs 19,397 14,005
Number of block rams 150 120

Virtex-2
Clock Speed (MHz)

90.0 143.2
Virtex-2P 107.7 176.2

Virtex-2 & 2P

Number of occupied Slices 4,454 3,141
Total number of 4 input LUTs 6,617 4,405

Number of block rams 90 60
Number of 18 ∗ 18 multipliers 120 30

6. CONCLUSION

Reconfigurable architectures have many applications in classifica-

tion algorithms. Depending on the classifier, reconfigurability can

assist in speeding up classification process. In this paper, FPGA

is used as a co-processor to accelerate the classification using 1NN

classifier. To evaluate the effectiveness of our implementation on

FPGAs, experiments were carried out on two data sets. Results have

shown that the classification accuracy is exactly same for both FP-

GAs and µP based solutions with FPGA has superior speed perfor-

mances (average up to 33 times faster).
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