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ABSTRACT
Harmonic Models are commonly used in signal processing. The

analysis of harmonic signals requires the solution of a symmet-

ric Toeplitz system of equations. Levinson-based Toeplitz solvers

have a O(n2) complexity. This paper proposes an O(n) algorithm

by encoding the inverse matrices required for the solution of the

linear system to a few parameters in order to obtain an approximate

solution for the harmonic model. For speech related applications,

the proposed algorithm is 2-30 times faster than the Levinson al-

gorithm, while degradation is minimal and memory requirements

are very low.
1. INTRODUCTION

Harmonic representations of signals provide a valuable tool for

signal processing and there are many methods that use or imply a

Harmonic Model (HM) for the representation of a signal space.

Some of the most important applications of HM are related to

speech processing and the speech processing community has ex-

tensively used the fact that the speech signal exhibits a (quasi)har-

monic behavior in voiced parts. Harmonic models of speech have

been successfully used in speech coding, speech analysis/synthesis,

voice transformation, text-to-speech, etc.

Sampling the spectrum of a windowed discrete signal at har-

monic frequencies: ωk = kω0, k = 1, ..., K , where K is the

maximum number of harmonics, is an expensive operation when

the harmonic frequencies do not coincide with the FFT frequency

bins. Let x(n) be the signal and w(n), n = −N, ..., N be the

window applied to the signal. The analysis process in HM is ac-

tually the projection of the windowed signal xw(n) = w(n)x(n)
into the subspace generated by the windowed harmonically related

cosines and sines:

ck(n) = w(n) cos(kω0n)
sk(n) = w(n) sin(kω0n)

(1)

The projection involves the computation of a pseudoinverse or

equivalently the solution of a real symmetric Toeplitz system of

equations with arbitrary right hand side. The most efficient sym-

metric Toeplitz solvers for matrix dimensions of less than one hun-

dred belong to the class of Levinson-type algorithms. Levinson’s

algorithm [1] has a complexity of 4n2 + O(n) flops. An improve-

ment to a complexity of 3n2+O(n) flops was made in [2] with the

split-Levinson algorithm. A further improvement was made with

the even-odd split Levinson algorithm [3] which has a complexity

of 5
2
n2 + O(n) flops. A recent publication [4] introduces a rel-

atively small improvement for certain cases. However, all these

methods require O(n2) complexity to provide an exact solution.

In this paper we present approximate solutions to the prob-

lem of fast HM analysis and synthesis. For analysis, our approx-

imate solution requires a complexity of O(n). The basic idea is

to exploit the patterns that appear inside the HM inverse cosine

and sine correlation matrices (A−1
c and A−1

s respectively) in or-

der to encode these matrices for a set of values in interest. Note

that the A−1
c and A−1

s matrices are a function of three parame-

ters: ω0, w(n) and the sampling rate Fs. Practically, the only

free variable for HM analysis with fixed window is ω0. Therefore,

instead of computing the inverse matrices for specific ω0 we can

simply decode them. Synthesis of harmonically related sinusoids

is also a time consuming operation. In [5] the computation of the

cosine and sine bases is accelerated using lookup tables and recur-

rence relations between the sinusoids. However, the lookup table

method requires an expensive modulo division operation. We pro-

pose a new set of recurrence relations that constructs the cosine

and sine harmonic bases with a minimal cost of approximately 1

MAC (Multiply-Accumulate) instruction per sample of the bases

vectors.

In Section 2 we provide the necessary background and intro-

duce the notation. The algorithm that encodes A−1
c and A−1

s is

presented in Section 3. Section 4 proposes a fast way to compute

the cosine and sine bases vectors which are needed to construct

the right hand side of the linear systems. The proposed analysis

method is then evaluated in Section 5 in terms of SNR. Further-

more, speed comparisons between the proposed method and the

standard Levinson algorithm indicate a significant improvement.

Section 6 concludes the paper.

2. BACKGROUND

The Harmonic Model is a parametric model used for signal analy-

sis/synthesis. The signal is represented as a weighted sum of har-

monic cosines and sines:

x̂(n) =
K�

k=1

[ck cos(kωon) + sk sin(kωon)] (2)

where ωo is the fundamental frequency, K is the number of the

harmonics, ck and sk are the cosine and sine coefficients describ-

ing the even and odd part of the k-th harmonic sinusoid respec-

tively, and n is the time index. The unknown parameters ck and

sk are evaluated using a weighted least-squares method that mini-

mizes the square error criterion with respect to ck and sk:

ε =

N�

n=−N

w2(n)(x(n) − x̂(n))2 (3)

where x(n) is the original signal, x̂(n) is its harmonic representa-

tion, w(n) is a symmetric window and 2N + 1 is the duration of

the analysis frame.
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Using matrix formulation, we may rewrite (2) as

x̂ = B

�
c
s

�
(4)

where B is the (2N + 1) − by − 2K cosine/sine basis matrix

B = [C S] (5)

and where C and S are the cosine and sine bases matrices, respec-

tively, with size (2N +1)− by−K and elements that are defined

by:

Cn,k = cos(kωon) (6)

Sn,k = sin(kωon) (7)

for n = −N, . . . , N and k = 1, . . . , K , while vectors c, s hold

the parameters to be computed:

c = [c1c2 . . . cK ]T (8)

s = [s1s2 . . . sK ]T (9)

The solution to the least-squares problem (3) is then given by

the normal equations [6]:

(BT W T WB)

�
c
s

�
= BT W T Wx (10)

where W = diag (w(−N), w(−N + 1), . . . , w(N)) is a diag-

onal matrix with the symmetric window w for diagonal and x is

a (2N + 1) − by − 1 vector that holds the original signal x =
[x(−N)x(−N+1) . . . x(N)]T . Note that (BT W T WB)−1BT W T

is the pseudoinverse matrix that projects the (weighted) signal into

the subspace of the weighted harmonic sines and cosines.

Using simple trigonometric algebra and the fact that the win-

dow w is a symmetric one, we have that

BT W T WB =

�
CT W T WC CT W T WS
ST W T WC ST W T WS

�

=

�
Ac 0
0 As

� (11)

and

BT W T Wx =

�
CT W T Wx
ST W T Wx

�
=

�
bc

bs

�
(12)

where Ac and As are the K−by−K cosine and sine, respectively,

weighted correlation matrices, bc and bs are the cosine and sine

K − by − 1 projection vectors, and 0 is the K − by − K zero

matrix. Therefore, from (10) we get the following two systems to

solve:

Acc = bc (13)

Ass = bs (14)

It can be shown, that the correlation matrices Ac and As are

symmetric Toeplitz matrices, so the two systems can be solved

efficiently by Levinson-type algorithms [1], [2], [3]. We propose

to solve (13) and (14) by encoding the inverse matrices A−1
c and

A−1
s .
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Fig. 1. Similarity measurement using Hamming window.

3. FAST HARMONIC ANALYSIS USING ENCODED
MATRICES

This section presents the encoding and decoding algorithm for the

inverse matrices A−1
c and A−1

s . Initially, it will be shown that

A−1
c ≈ A−1

s for many interesting frame durations (20ms and

30ms), sampling rates Fs = { 2 kHz, 8 kHz, 16 kHz } and for

all integer fundamental frequencies f0 between 60 Hz and 400 Hz.

Then we will define A ≡ A−1
c and present an encoding algorithm

Q(·) that encodes A to Â = Q−1(Q(A)). Finally, the quality of

the approximation made by using the encoded matrix Â, for the

cases under examination, will be addressed.

3.1. Similarity between A−1
c and A−1

s

The similarity between the inverse matrices A−1
c and A−1

s was

measured for all examined cases of sampling rates, frame durations

and ω0, using the Hamming window. As a distance measure we

used the element-wise mean value of the absolute difference of the

product of the first inverse matrix and the second matrix, with the

identity matrix I:

d(A−1
1 , A−1

2 ) = mean‖A−1
1 A2 − I‖ (15)

The results of the two measurements: d(A−1
c , A−1

s ) and d(A−1
s , A−1

c )
are very close, so we chose to present only the former for clarity.

As shown in Figure 1, the distance d(A−1
c , A−1

s ) is well be-

low 10−3 for the majority of the examined cases. Note that this

corresponds to a mean relative error of 0.1% because the elements

of the product A−1
c As should approximate the identity matrix I .

Similar results were obtained for other commonly used windows

like Hanning, Rectangular, and Blackman. Therefore, for the rest

of the paper, the matrix A ≡ A−1
c ≈ A−1

s will serve as an approx-

imation of the inverse of both matrices Ac and As.

3.2. Encoding Algorithm

It is unrealistic to store one inverse matrix for every possible f0.

The storage requirements for A can be reduced if we can exploit

the structure of the matrix. The elements of A have a specific pat-

tern of similarity in the columns of A. Each column is similar to

the other columns in accordance to a shift in row sense. In other

words, A is similar to a Toeplitz matrix. Note that the inverse of

a symmetric Toeplitz matrix may not be a Toeplitz matrix. Addi-

tionally, the main pattern is symmetric. We developed an encoding

algorithm that selects representative patterns from the columns of

A. These representative patterns are used to create the decoded

matrix Â.
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Fig. 2. A and Â columns for Fs = 2kHz, f0 = 70Hz and 20ms
frame. Circled are the selected representative patterns.

The selection of the representative patterns is made using an

energy criterion so that the decoded columns retain 99.999% of

the energy of the original columns. Since the pattern of the cen-

ter column is approximately symmetric, only half of it needs to be

stored. A variable number of patterns (1 to 4) may be extracted

for each matrix A. The patterns are extracted from columns 1,2,3

and �K/2�. The main representative pattern, p0, is created from

the �K/2�-th (center) column and it is always kept. Let p1, p2

and p3 be the representative patterns from the 1st, the 2nd and the

3rd column, respectively. From these three patterns, only the ones

that represent columns for which p0 does not satisfy the energy

criterion are kept. Finally, all kept representative patterns are ex-

tended to include as many elements as the longest one, and may

be zero-padded if they do not have enough elements. The encoded

representation of A consists of these patterns and requires only a

few parameters per matrix.

An example of a matrix A and its compressed version Â is

shown in Figure 2. The figure plots the columns of A and the

columns of the corresponding matrix Â. The representative pat-

terns in the leftmost matrix A are circled. The rightmost ma-

trix Â is constructed using only the circled representative pat-

terns. It is evident that Â captures the coarse structure of A. The

number of parameters required to encode all matrices A(f0) for

f0 = 60, 61, ..., 400Hz and the corresponding compression ratios

are shown in Table 1. Clearly, the memory requirements for the

representative patterns pi,i = 0, ..., 3 are quite low.

Fs(kHz) Frame(ms) Parameters Compression Ratio

2 20 1387 7.2
2 30 506 19.8
8 20 1833 103.2
8 30 504 375.4

16 20 2069 392.8
16 30 503 1616.0

Table 1. Number of parameters needed to encode all matrices for

f0 = 60, 61, ..., 400Hz. A Hamming window was used.

The decoded matrix Â is decoded from the stored represen-

tative patterns. The center column representative pattern is mir-

rored and concatenated to itself, to approximate the original center

column and is copied to all columns using the appropriate shift.

The representative patterns of the first, second and third column -

whichever are kept- are copied to their respective column, with the

appropriate mirroring and concatenation for the second and third

pattern. These are also flipped and copied to the last, second to last

and third to last column accordingly.

The representative patterns pi evolve smoothly with respect

to f0. Therefore, we can interpolate the representative patterns
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Fig. 3. Encoding quality measurement using Hamming window.

for values of f0 that were not used at the encoding stage. For

example, the patterns pi for f0 = 100.5Hz can be taken from

the linear interpolation of the nearest patterns at f0 = 100Hz and

f0 = 101Hz: pi(100.5) = 0.5(pi(100) + pi(101)).

The pattern structure of A is broken when the harmonic anal-

ysis includes sinusoids that are near the Nyquist frequency, Fs/2.

Therefore, all the experiments in the paper were conducted with a

maximum harmonic frequency that is slightly lower than Fs/2. In

particular, the cutoff frequencies for Fs = 2kHz, Fs = 8kHz
and Fs = 16kHz were 0.9kHz, 3.7kHz and 7.6kHz, respec-

tively.

The complexity of the decoding process depends on the num-

ber of harmonics K and the size of the patterns. Since the size

of patterns is bounded to a few coefficients, the complexity of the

proposed algorithm is linear, i.e. O(n). This is a significant im-

provement, compared to the best Levinson solvers [3], [4] which

require a complexity of O(n2). In fact, the decoding process is

just a multiplication of bc (or bs) with a sparse matrix generated

by the representative patterns.

3.3. Quality of the Approximation
The approximation made by the proposed encoding algorithm is

evaluated with the distance measure in (15). The distances d(Â, A−1
c )

and d(Â, A−1
s ) were measured for f0 = 60, ..., 400Hz and sev-

eral sampling rates, windows, frame durations. However, the cor-

responding distances d(Â, A−1
c ) and d(Â, A−1

s ) are very close in

a numerical sense, therefore for clarity, we will present results

regarding only d(Â, A−1
c ). The results are depicted in Figure 3

where it is shown that distance d(Â, A−1
c ) is below 0.02 for the

case of Fs = 2kHz and well below 0.01 for the rest of the ex-

amined cases. Note that the measurements were made using a

Hamming window and that similar results were obtained for other

windows.
4. FAST HARMONIC SYNTHESIS

The computation of the cosine and sine bases, used in (13) and (14),

requires a considerable portion of the complexity of the HM anal-

ysis. However, the cosine and sine functions can be computed

iteratively over time by [5]:

cos(kωo(n + 1)) � (1 − α) cos(kωon) − β sin(kωon)
sin(kωo(n + 1)) � (1 − α) sin(kωon) + β cos(kωon)

where α = 2 sin2(0.5kωo) and β = sin(kωo). These compu-

tations need 2 MAC (Multiply-Accumulate) operations for each

cosine or sine evaluation. The complexity can be further reduced
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Fig. 4. Speed comparison using Hamming window for the fre-

quency range of [60:0.5:182]Hz.

if the recurrence is taken over the harmonic frequencies:

cos(kωon) = 2 cos((k − 1)ωon) cos(ωon) − cos((k − 2)ωon)
sin(kωon) = 2 sin((k − 1)ωon) cos(ωon) − sin((k − 2)ωon)

With proper implementation, these computations need only 1 MAC

operation each. Furthermore, the symmetry and antisymmetry of

C and S over the rows can be exploited to slice the cost for the

computation of the corresponding matrices. Note that the central

row of C and S have constant values of 1 and 0, respectively. We

use the following combination of the presented recurrence rela-

tions. Initially, we use the recurrence over the rows of C, S (time

index n) to compute the sine/cosines of the first harmonic. Then

we use the recurrence over the frequencies to compute the rest of

the harmonics.
5. EXPERIMENTS

A speed comparison was made between the proposed algorithm

and the Levinson algorithm [1]. The Levinson algorithm was cho-

sen because it is a well known and widely implemented algorithm;

therefore a suitable point of reference. The motivation behind the

comparison is to provide a reference example of the behavior of

the proposed algorithm in specific conditions.

A white noise signal was analyzed for fundamental frequen-

cies f0 in the range of 60 Hz to 400 Hz with step 0.5 Hz at the

sampling rates and frame sizes under examination. Both systems

in (13), (14) were solved with the proposed algorithm and the

Levinson algorithm [1]. Six different experiments were conducted,

one for each combination of the three sampling rates Fs = {2 kHz,

8 kHz, 16 kHz} and the 2 window sizes { 20 ms, 30 ms }. For

each comparison, the algorithms were repeated 100.000 times to

reduce the effect of the operating system on the measurements.

The experiments were conducted using a 3 GHz Pentium 4 PC and

optimized ANSI-C implementations. Figure 4 shows the ratio be-

tween the execution time of the Toeplitz solver and the execution

time of the proposed algorithm. For example, a ratio of 5 means

that the proposed algorithm is 5 times faster than the Toeplitz

solver. The proposed algorithm is 2-30 times faster than the Levin-

sion algorithm. The gain increases as the number of harmonics K
increases (or equivalently the Fs) or the size of the window in-

creases. A larger window reduces the length of the representative

patterns and this is clearly reflected into the speed measurements.

Furthermore, the speed measurements indicate that the proposed

algorithm has linear complexity O(n). Note that the fluctuations

in the time ratio are due to the fact that for the non-integer fun-
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Fig. 5. Average segmented SNR degradation for several f0 inter-

vals.

damental frequencies our algorithm performs an interpolation be-

tween the representative patterns of the two nearest integer funda-

mental frequencies.

The performance of the proposed algorithm was also evaluated

in terms of segmental SNR. Tests of analysis/synthesis of narrow-

band speech signals (Fs = 4 kHz) using 20ms frames weighted by

a Hanning window were conducted. Estimation of pitch was used

for the voiced frames, while for the unvoiced frames, a constant

fundamental frequency f0 = 100 Hz was used. The compari-

son was made using 512 narrowband utterances (256 males, 256

females). Let SNRLev be the segmental SNR provided by the

Levinson algorithm and SNRfast be the segmental SNR provided

by the proposed algorithm. The difference dSNR = SNRLev −
SNRfast was taken on a frame-by-frame basis. Figure 5, depicts

the average dSNR for several f0 intervals. Note that the SNR

degradation is negligible for most frequencies. However, in lower

frequencies (f0 < 70 Hz) the degradation is more evident. That

is to be expected, since as we showed in figures 1 and 3 our algo-

rithm doesn’t perform well for this range. This is not a significant

problem because such pitch values are very rare and the SNR is

already very high due to the dense frequency sampling. In order to

reduce the SNR loss, the number of representative patterns must

be increased.

6. CONCLUSION

An O(n) algorithm for Harmonic Model (HM) analysis was pre-

sented. The algorithm is based on a lookup table of encoded matri-

ces and provides an approximate solution to the symmetric Toeplitz

systems that appear in HM analysis. Experiments indicate that

there are considerable speed improvements (2-30 times) over the

Levinson algorithm for many common analysis cases encountered

in speech processing. Furthermore, the degradation in terms of

SNR is minimal.
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