
SLIDE: STREAMING AND LOAD-ADAPTIVE PERIODICITY ESTIMATION

Deepak S. Turaga, Michail Vlachos, Spiros Papadimitriou, and Philip S. Yu

IBM T.J. Watson Research Center
19 Skyline Dr, Hawthorne, NY

ABSTRACT

We introduce a CPU-adaptive algorithm for spectrum esti-
mation on streaming data. Our approach combines a fast and
intelligent load-shedding scheme with a closed form incre-
mental spectrum computation, which adapts gracefully to the
available computational resources.

1. INTRODUCTION

Several emerging applications, including network traffic mon-
itoring, financial data feeds, telemetry applications, medical
data (e.g., ECGs), etc., contain streaming data arriving at high
rates. Stream processing systems employ a collection of data
analytic units which typically compete for available compu-
tational and memory resources. In such systems real-time
response is crucial, therefore light-weight and efficient algo-
rithms for processing and analyzing such data are highly de-
sirable. Ultimately, however, the dominating constraint is the
available system resources. Therefore, there is need for meth-
ods that can also gracefully degrade result accuracy based on
CPU or memory availability; a good-enough answer is better
than no answer at all.

Our goal is to efficiently estimate and update the peri-
odogram of a signal, within a sliding time window. For fixed-
length signals (with N samples), the periodogram can be es-
timated in O(N log N) time using the FFT. For dynamically
updated sequences, the Momentary Fourier Transform (MFT)
[1] can be employed to update the estimate over a sliding
window. Recently, [2] proposes methods for periodicity es-
timation on streams, based on retaining the k most signif-
icant Fourier coefficients. However, none of the streaming
approaches address the issue of resource adaptation.

A simple approach for load adaptation is to subsample
the signal at regular intervals. However, this can lead to data
aliasing and deteriorate the quality of the estimated period-
ogram. In contrast, our approach (see Fig. 2) uses a linear
predictor which retains a sample only if its value cannot be
predicted from its neighbors (leading to unevenly spaced sam-
ples). This scheme allows us to efficiently make on-the-fly
decisions whether to discard a sample. We incorporate an es-
timator unit that adjusts the error tolerance of the predictor,
based on available CPU time. Furthermore, we also introduce
a closed-form Fourier approximation using uneven samples

and we show how to update it incrementally. We call our load-
adaptive methodology SLIDE (Streaming and Load-adaptive
Periodicity Estimation). A schematic of our approach is pro-
vided on Fig. 1.

Examined window

Parameter
Estimator

CPU Load

Sufficient CPU

Insufficient CPU

Naïve sampling

Intelligent sampling

Remove more points

Spectrum Estimation

Spectrum

Estimation

Fig. 1. Visual depiction of SLIDE.

Notation In the following, x[k] is the k-th element (k ∈
Z

+) of a discrete signal and X[m] are its DFT coefficients.
In this paper we use the periodogram of the signal as an es-
timator of the spectrum (and use the terms interchangeably).
The notation x[ki] is used for the unevenly sampled signal,
ki, i ∈ Z

+. Finally, we measure the complexity of our al-
gorithms in terms of the number of additions (subtractions),
multiplications and divisions (making the analysis indepen-
dent of the underlying processor architecture). We label the
complexity of a single multiplication as ξMul, of a division as
ξDiv and of an addition/subtraction as ξSub.

2. LOAD-SHEDDING SCHEME

We consider the typical problem of running spectral analy-
sis where we slide a window across the temporal signal and
incrementally update the signal’s DFT (and the respective pe-
riodogram). As the data window slides by a fixed amount, we
discard n1 points from the beginning of the signal and add n2

points to the end (n1 = n2 for evenly sampled signals). How-
ever, if the available CPU cycles do not allow us to update
the DFT using all the points, we can adaptively prune the set
of added points to n̂2 using uneven sub-sampling to meet the
CPU constraint, while minimizing the impact on the accuracy
of the updated DFT.

III 1000142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

2.1. Intelligent sampling via a linear predictor

We determine if a sample can be discarded based on whether
it can be linearly predicted from its neighbors. In particular,
for sample ki we compare the actual value x[ki] with the in-
terpolated value xint[ki] :

xint[ki] =
x[ki−1](ki+1 − ki) + x[ki+1](ki − ki−1)

ki+1 − ki−1
(1)

where sample ki−1 is the last retained sample before sample
ki and sample ki+1 is the immediately following sample. If
the instantaneous error δki

:= |xint[ki]−x[ki]| ≤ ∆ × |x[ki]|
we can discard the sample ki, otherwise we retain it. The pa-
rameter ∆ is an adaptive threshold that determines the quality
of the approximation. The complexity of this algorithm for
M samples is :

ξsamp(M) = (2ξMul + 4ξSub + ξDiv)(M − 2) (2)

In Section 2.2 we discuss how to tune the threshold ∆ in
order to obtain the desired number of N samples, out of the
original M samples.

Comparison of Periodograms

Original Periodogram
Intelligent Sampling

Total Error =25.2295

Original Periodogram
Equi Sampling

Total Error =50.5209

Fig. 2. Comparison of spectrum estimation errors for intelli-
gent sampling and equi-sampling techniques.

Fig. 2 compares the spectrum estimates for a snapshot of
a data stream, using the intelligent sampling method against
a naı̈ve equi-sampling technique. We execute our algorithm
for a specific threshold and reduce the data points within a
window from M down to N . We estimate the resulting pe-
riodogram (see section 3) as well the periodogram derived
by equi-sampling every N/M points. Through the intelligent
sampling we can provide higher quality reconstruction of the
periodogram, because the important data stream features are
retained.

It is possible to derive a worst case bound of the cumula-
tive error for each discarded sample. Consider an interval 0 ≤
k ≤ K + 1, for evenly sampled signal x[k], where we retain
samples x[0] and x[K + 1] and discard the rest. The absolute
cumulative error εk := |x[k] − (x[K + 1] − x[0])/k| is the
difference between the actual value and the interpolated value
based on the retained samples x[0] and x[K +1], whereas the
instantaneous error is the difference δk := |x[k]− (x[k+1]−
x[0])/k| where the interpolation is based on the next sample

|x[K]|

+/− ∆/Κ

+∆

−∆

0 1 2 K+1K

+/− ∆/Κ
+/− 2∆/Κ

k

|x[K]|

k

Fig. 3. Contribution of instantaneous error at sample K to
cumulative error of previously discarded samples.

x[k + 1], instead of x[K + 1]. For x[K] the absolute cu-
mulative error is the instantaneous error, i.e. εK = δK . By
triangle similarity, it is easy to see (Fig. 3) that the worst case
contribution of εK to the cumulative error for sample x[k],
1 ≤ k ≤ K − 1, is

(k/K)εK ≤ (k/K)∆|x[K]| ≤ (k/K)∆maxK
j=1|x[j]|.

Summing these up we get

εk ≤
�
∆ + k∆ � 1/(k + 1) + · · · + 1/K � � maxk|x[k]|

≈
�
∆ + k∆ � ln K − ln k � � maxk|x[k]|

= ∆(1 + k ln(K/k)) maxk|x[k]|,

where we approximate the harmonic series by
∑K

k=1
1
k ≈

ln K. This is maximized for k = K maxk |x[k]|/e and the
maximum (over all discarded samples) of the worst case cu-
mulative error is ∆(1 + K/e). Since the sequence is variance
scaled, maxk |x[k]| is typically small and can be ignored.

WebLog Data, T = 80, compression = 45.4795%

Periodogram

Before Load Shedding
After Load Shedding

Original Signal
Retained Points

WebLog Data, T = 120, compression = 76.4384%

Periodogram

Before Load Shedding
After Load Shedding

Original Signal
Retained Points

Fig. 4. Spectrum approximation for different threshold values

2.2. Threshold Estimator

Our goal is to predict the threshold ∆ that will produce a de-
sired number of uneven samples N during the next time win-

III 1001

dow of length M in the future. The estimation of ∆ is based
on the behaviour of the signal during the past window of same
size. Formally, let kc be the current sample at the time we
wish to readjust for available resources and let x[k : k +M −
1] :=

(
x[k], x[k+1], . . . , x[k+M−1]

)
∈ R

M be a window of
M even samples. Then, we want a mapping p : R

M ×N �→ R

giving us the threshold ∆ = p
(
x[kc − M + 1 : kc], N

)
.

However, the domain R
M × N of p has excessively high

dimensionality. Our practical solution is to summarize x[k :
k + M − 1] by a small set of features which capture the “ir-
regularity” of the signal within that window. Formally, let
f : R

M �→ F be a mapping from the actual window to a suffi-
ciently small feature set F ⊆ R

d, where d � M . The thresh-
old estimator we use in practice is a mapping p̂ : F×N �→ R.
The interpolation threshold we choose is ∆̂ = p̂

(
f(x[kc −

M + 1 : kc], N)
)
.

The feature we use is a per-band variance ffreq. If X[m],
0 ≤ m ≤ M−1 are the DFT coefficients of x[k : k+M−1],
then we divide the frequencies into B bands of equal width to
obtain

ffreq � x[k : k + M − 1] � := (v0, v1, . . . , vB−1) ∈ R
B ,

where vj :=
∑(j+1)(M−1)/B

m=j(M−1)/B+1 X2[m], 0 ≤ j ≤ B − 1.
Note that the DC coefficient X[0] is omitted from ffreq. When
B = 1, then v0 = Var(x[k : k +M − 1]). The per-band vari-
ance provides a finer characterization of the irregularities than
just the variance. Small number of bands B (e.g., B = 2 or
B = 4) provide good estimators without increasing the space
complexity. These features can be incrementally maintained
over a sliding window of size M .

The next step is how we compute the estimate p̂. To
that end, we use a training set W := {Wj | Wj = x[ij :
ij + M − 1], 1 ≤ j ≤ w}, consisting of w windows. We run
our algorithm on each window for several different thresholds
and get value of N for each of them. This produces a train-
ing set T of examples Sl ∈ F × N × R, i.e., T :=

{
Sl |

Sl = (f(Wjl
), Nl,∆l), Wjl

∈ W
}
. We use the subscript l

to identify elements of T (1 ≤ l ≤ |T |).
We employ a k-NN (k nearest-neighbor) interpolation scheme

to estimate p̂, where the neighbor distance is computed only
with respect to the features f(Wjl

) and the number of retained
samples Nl. More specifically, if W := x[kc − M + 1 :
kc], then kNN(f(W), N) is the set of k elements Sl ∈ T
with the smallest distances ‖(f(Wjl

, Nl)−(f(W), N)‖ from
(f(W), N), among all elements of T . Then

∆̂ = p̂kNN(f(W), N) := 1
k � Sl∈kNN(f(W),N) ∆l.

Additionally, T can also be incrementally refined over time,
by incorporating examples that haven’t been encountered dur-
ing the training phase. This can minimize the potential errors
of the threshold estimator, even under significant changes in
the stream pattern.

3. SPECTRUM ESTIMATION FOR UNEVENLY
SAMPLED SIGNALS

Given N uneven samples x[kn], 0 ≤ n ≤ N − 1, we estimate
the periodogram as follows. Conceptually, we first use lin-
ear interpolation (as for the sub-sampling) to reconstruct the
evenly sampled signal x[k] and then estimate the DFT X[m]
from it. However, we do not actually need to perform the
interpolation and instead, we can directly derive closed form
expressions, as in [3], for the DFT of x[ki] as:

X[m] = � N−1
n=1 Xn[m] (3)

where, for m = 1, . . . , M − 1,

Xn[m] = 1

(kn−kn−1)(
2πm
M

)2

�
� x[kn−1] − x[kn] � ·

· � e−j
2πmkn−1

M − e−j
2πmkn

M � +

+ j 2πm
M

� x[kn]e−j
2πmkn

M − x[kn−1]e
−j

2πmkn−1

M � � , (4)

and for m = 0,

Xn[0] = 1
2
(x[kn−1] + x[tn])(kn − kn−1). (5)

Note that, while x[ki] has N samples, the DFT has at least
M = kN−1 − k0 samples to avoid time domain aliasing.

3.1. Incremental Spectrum Estimation for Streaming Data

A significant benefit of equation (3) is that the DFT for un-
evenly sampled signals can be evaluated incrementally. Hence,
if we shift the window (of size M) such that n1 points are dis-
carded, and n2 new points are added (i.e. we have N+n2−n1

points), then the DFT of the signal may be updated as:

Xnew[m] = Xold[m] − � n1

n=1 Xn[m] + � N+n2−1
n=N

Xn[m] (6)

We now examine the complexity of this update. Similar to
prior analyses of FFT complexity, we do not consider the
complexity of computing e

j2πmkn
M (and the intermediate value

2πmkn

M). The complexity of computing Xn[m] is

ξ̂nz = 6ξMul + 5ξSub + ξDiv, m = 1, . . . , M − 1, (7)

ξ̂z = 2ξMul + 2ξSub, m = 0. (8)

If we define ξ̂all = (M − 1)ξ̂nz + ξ̂z , the total update com-
plexity is

ξup(M, n1, n2) = (n1 + n2)[ξ̂all + MξSub] + 2MξSub (9)

3.2. Complexity Reduction with Sub-sampling

When the window shifts, we cannot adapt the number of points
discarded (n1), however we can reduce the number of new
points added (n2) through intelligent sub-sampling. Consider

III 1002

Dataset ∆ (%) Window Compression (%) Error Equi-Sampling Error Intelligent Improvement (%)
ECG 20 80.96 1627.55 450.79 72.30

60 91.40 2434.59 1326.23 45.52
100 95.79 2934.84 2171.04 26.02

EEG 20 6.73 79.79 2.76 96.53
60 18.45 202.03 33.10 83.61
100 32.81 221.16 105.99 52.07

RTT 20 35.90 147.76 26.68 81.94
60 60.69 174.24 81.21 53.38
100 75.55 210.69 123.98 41.15

WebTrace 20 13.97 22.08 4.04 81.70
60 37.26 46.29 18.98 58.99
100 61.36 52.31 47.52 9.15

Table 1. Accuracy of periodogram using Intelligent and Equi-Sampling

that the sub-sampling results in n̂2 samples (n̂2 ≤ n2). Com-
paring equations (9) and (2) we realize that the overall com-
plexity of updating the spectrum estimate is reduced when:

ξup(M,n1, n2) ≥ ξup(M,n1, n̂2) + ξsamp(n2) (10)

Consider a simple case when n̂2 = n2 − 1, i.e. sub-sampling
discards one sample. The sub-sampling complexity is (2ξMul+
4ξSub + ξDiv)(n2 − 2) while the decrease in the update com-
plexity is (M−1)(6ξMul+5ξSub+ξDiv)+(2ξMul+2ξSub)+
MξSub. Clearly, since n̂2 < n2 ≤ M , we can easily realize
that the reduction in update complexity far outweighs the sub-
sampling complexity. In general, equation (10) is always true
when the sub-sampling reduces the number of samples (i.e
when n̂2 < n2). If, at a certain time, the CPU imposes a com-
putation constraint of ξlimit, and ξup(M,n1, n2) > ξlimit we
can determine the optimal number of samples to retain n̂2, as:

n̂2 ≤ ξlimit
−ξsamp(n2)−2MξSub

(M−1)(6ξMul+5ξSub+ξDiv)+(2ξMul+2ξSub)+MξSub
− n1

(11)
We can achieve this by tuning the threshold ∆ based on the
algorithm described in Section 2.2.

4. EXPERIMENTS

We examine two parameters of the resource-adaptive spec-
trum estimation: (1) The accuracy of the approximated peri-
odogram, (2) The CPU adaptiveness of our technique, which
depends on the quality of the threshold estimator. We mea-
sure the periodogram error on various datasets, and for dif-
ferent threshold values of the linear predictor. For a given
threshold, a data window of length M will be reduced to N
samples. We compare the quality of the approximated peri-
odogram against a rudimentary approach that performs equi-
sampling every N/M points. The results are given in Table 1
and clearly indicate that the proposed load-shedding scheme
leads to high quality spectrum estimates. The reduction in
the estimation error compared to equi-sampling, ranges from
10% to more than 90%.

Next, we measure the accuracy of the threshold estimator
on a streaming automotive measurement dataset with a win-
dow M = 1024. We consider a synthetic CPU load, requiring
sample reductions in the range 1/20 ≤ N/M ≤ 1. We use

−500 0 500
0

10

20

30

40

50

N
um

be
r

of
 In

st
an

ce
s

Threshold prediction error

1−NN: Avg Error = 68

Underestim
ated

Ove
restim

ated

−500 0 500
0

10

20

30

40

50
5−NN: Avg Error = 51

N
um

be
r

of
 In

st
an

ce
s

Threshold prediction error

Underestim
ated

Ove
restim

ated

Fig. 5. Histogram of the threshold estimator error, indicating
the cases of overestimated and underestimated threshold

B = 2 per-band variance features. The accuracy of the esti-
mator is measured for each sliding data window as N − N̂ ,
where N is the desired number of samples to retain and N̂ is
the actual number. We evaluate both 1-NN interpolation and
5-NN interpolation. Histograms of the approximation error
are provided in Fig. 5. The empirical error distribution in-
dicates that for the majority of cases the estimation error is
small. Furthermore, the instances of overestimated threshold
(fewer remaining points than expected) are higher than the
underestimated.

5. CONCLUSION

We presented a spectrum estimation method that can adapt its
quality based on the CPU load. Compared to equi-sampling,
our intelligent load-shedding scheme can introduce improve-
ments on the spectrum estimation ranging from 10% to 90%.

6. REFERENCES

[1] A. Papoulis. Signal Analysis. McGraw-Hill, 1977.
[2] A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and

M. Strauss. Near-optimal Sparse Fourier Representations
via Sampling. In STOC, pages 152–161, 2002.

[3] P. Castiglioni, M.D. Rienzo, and H. Yosh. A Computa-
tionally Efficient Algorithm for Online Spectral Analysis
of Beat-to-Beat Signals. In Computers in Cardiology:29,
417:420, 2002.

III 1003

