
HARDWARE OPERATOR FOR SIMULTANEOUS SINE AND COSINE EVALUATION

Arnaud Tisserand

LIRMM, CNRS–Univ. Montpellier II
161 rue Ada. 34392 Montpellier cedex 5. France

arnaud.tisserand@lirmm.fr

ABSTRACT

This work deals with hardware evaluation of the sine and co-
sine functions for the same argument simultaneously. The
proposed method uses trigonometric identities, small lookup
tables and low-degree polynomial approximations with very
sparse coefficients. Most of the multiplications are replaced
by a small number of additions or subtractions, this leads to
small and fast circuits.

1. INTRODUCTION

High-speed approximations to the sine and cosine functions
are often used in digital signal and image processing or in dig-
ital control. Several methods have been proposed to evaluate
those functions, see [1] for a survey. When the input/output
precision is relatively low (less than 24 bits), table and ad-
dition methods are often employed [2, 3]. Efficient methods
based on small multipliers and tables have been proposed [4].

In this work, we show that using some trigonometric iden-
tities and simple basic operations, it is possible to evaluate
both functions in about the same time as to compute only
one of them and with small circuit. The proposed method is
based on small lookup tables and low-degree polynomial ap-
proximations with sparse coefficients. The complete operator
requires at most one small multiplication, all other multipli-
cations have been transformed into a small number of addi-
tions/subtractions. Our method is implemented using Maple.

2. PRELIMINARIES

The proposed method uses the following trigonometric iden-
tities. These identities are widely used in software evaluation
of trigonometric functions, for instance see [5].

sin(x + y) = sin(x) cos(y) + cos(x) sin(y), (1)

cos(x + y) = cos(x) cos(y) − sin(x) sin(y). (2)

The notation ()2 denotes the binary representation of a
value (e.g., 3.125 = (11.001)2). The quantified values will
be represented in the borrow-save format [6] (i.e., radix-2 re-
dundant representation with the digit set {−1, 0, 1}. Bits with
a negative weight are denoted by 1.

The approximation error εth due to the use of polynomial
P to evaluate function f on [a, b] is defined below and numer-
ically estimated using the Maple infnorm function:

εth = ||f − P ||∞ = max
a≤x≤b

|f(x) − P (x)|.

The input argument x is considered as exact. The approx-
imation error measures the distance between the mathemati-
cal function and the approximated function used to evaluate
it. The rounding error due to the discrete nature of the final
and intermediate values adds up to the approximation error.

The degree-d minimax polynomial approximation to f on
[a, b] is the polynomial P ∗ that satisfies:

||f − P ∗||∞ = min
P∈Pd

||f − P ||∞,

where Pd is the set of polynomials with real coefficients and
degree at most d. Minimax approximations can be computed
thanks to an algorithm due to Remes [7] (numerically com-
puted using the Maple minimax function).

As we deal with hardware implementations, multiplica-
tions by powers of 2 reduce to shifts (only routing).

3. PROPOSED ALGORITHM

We propose a method to evaluate simultaneously sin(x) and
cos(x) with the argument x in the domain [0, π/4]. Efficient
range reduction methods can be used to reduce to that do-
main [1]. However, our method can be applied to other do-
mains. The argument x is a wI -bit number and the outputs
sin(x) and cos(x) are wO-bit numbers (wI and wO are pa-
rameters provided by the user).

The proposed method is based on the following steps:

Step 1: argument decomposition x = a + h;

Step 2: parallel evaluation of

• sin(h) and cos(h) by polynomial approximation;

• sin(a) and cos(a) by table lookup;

Step 3: results reconstruction using

sin(a + h) = sin(a) cos(h) + cos(a) sin(h); (3)

cos(a + h) = cos(a) cos(h) − sin(a) sin(h). (4)

III 992142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

3.1. Argument Decomposition

The argument x is decomposed into x = a + h with

• a the m most significant bits (MSB) of x;

• h the l = wI − m least significant bits (LSB) of x.

Here we restrict h to positive values in order to avoid sign
extension problems and to simplify the decomposition pro-
cess (only routing at the hardware level). The parameter m
will be used for tuning speed/accuracy tradeoffs.

3.2. Polynomial Approximations to sin(h) and cos(h)

We use minimax polynomials as a starting point. The co-
efficients of the minimax approximations will be modified to
sparse coefficients in a second time. Minimax approximations
provide better accuracy than Taylor series expansions because
there are not only accurate around one point [1].

As the value h is small, i.e., h < 2−m, we can use low-
degree polynomials to approximate sin(h) and cos(h). In the
following, we will consider degree-d polynomial approxima-
tions with d ∈ {1, 2} (d is a parameter). P = p0+p1h+p2h

2

denotes the polynomial that approximates sin(h). Q = q0 +
q1h + q2h

2 is the polynomial approximation to cos(h).
The hardware cost for polynomial approximation is dom-

inated by multipliers. In order to avoid the products of the
coefficients by the powers of h, we use quantified coefficients
with at most k non-zero bits and k << wO . This means that
p1, p2, q1 and q2 have at most k non-zero bits (1 or −1). The
quantification is performed on the minimax polynomial co-
efficients using a Maple program for the parameter k. The
parameter k is determined using a very simple greedy algo-
rithm. We start with k = 2 and increment it at each iteration.
We stop when the target accuracy is obtained or the maximal
value kmax is reached.

The P and Q values are expressed using the notation be-
low where the bits pi,j and qi,j are in {−1, 0, 1}, and the ex-
ponents γi,j and δi,j are natural integers less than wO .

P = p0 +
d∑

i=1

k∑
j=1

pi,j2γi,j

︸ ︷︷ ︸
pi

× hi,

Q = q0 +
d∑

i=1

k∑
j=1

qi,j2δi,j

︸ ︷︷ ︸
qi

× hi.

For instance with d = 2, k = 3, wO = 16 and h < 2−4

(m = 4), the minimax polynomial approximation to sin(h) is
P = 1.000366h− 0.015620h2. The coefficient p1 is quanti-
fied to (1.0000000000011)2 and p2 to (0.000001)2. The eval-
uation of P requires 4 additions/subtractions and one multi-
plication to produce h2 (h is only l-bit large). This polyno-
mial leads to an approximation with 18.5 bits of accuracy.

This is more accurate than the order-3 Taylor series expan-
sion of sin(h), which is x + O(x3), that only provides an
approximation with 14.5 bits of accuracy.

3.3. Lookup Tables for sin(a) and cos(a)

TS denotes the table that stores sin(a) values. TC is the table
for cos(a) values. Both tables have 2m entries.

In order to replace multiplications by a small number of
additions in the results reconstruction, the values stored in the
tables are quantified to borrow-save values with at most t non-
zero bits with t << wO (t is another parameter). When using
quantified values with t non-zero bits, the product sin(a)×P
(or cos(a)×Q) is replaced by t− 1 additions or subtractions.

The TS and TC values are expressed using the notation
below where the bits si and ci are in {−1, 0, 1}, and the ex-
ponents αi and βi are natural integers less than wO .

TS(a) =
t∑

i=1

si2αi and TC(a) =
t∑

i=1

ci2βi .

The quantification error for each table is defined by:

εS = max
a

|TS(a)− sin(a)|;
εC = max

a
|TC(a) − cos(a)|.

For instance the quantification of sin(π/8) ≈ 0.382683
with t = 2 gives the binary value v = (0.011)2. The quantifi-
cation error is |v − sin(π/8)| ≈ 0.007683 which corresponds
to 7.02 bits of accuracy.

In practice, the values in TS and TC are stored using a
specific representation in order to simplify the reconstruction.
Using a direct sparse borrow-save representation requires to
get the position of the t non-zero bits (using a decoder). The
values stored in the tables are couples (position, weight) of
a non-zero bit where position is an integer less than wO and
weight is in {−1, 0, 1}. This avoids costly decoders.

3.4. Results Reconstruction

The reconstruction of the two results sin(x) and cos(x) is per-
formed by developing all the products with respect to quanti-
fied polynomial coefficients and quantified table values in the
identities:

sin(a + h) = sin(a) cos(h) + cos(a) sin(h);
cos(a + h) = cos(a) cos(h) − sin(a) sin(h).

The product sin(a) × cos(h) (or one of the three other
products) is performed by using the positions of the non-zero
bits of TS (or TC) to shift the internal terms of the sum of
products in Q (or P).

The final architecture depends on all the parameters and
the quantified coefficients of the P and Q polynomials pro-
vided by our Maple program. A complete example is pre-
sented in Section 4.

III 993

When using a degree-2 polynomial approximation, the
square of h can be shared by the polynomials P and Q. This
is the only “true” multiplication used in our method and it is
not a full-width multiplication since h is only a l-bit value.
This sharing may be used for higher values of d.

4. EXPERIMENTAL RESULTS

As the parameters space is very large, we focus in this sec-
tion on a specific example, but our Maple program can gen-
erate the operator description for all parameters. In order to
illustrate our results using plots, we use moderate precision:
wI = wO = 12 bits. We fix the parameters to m = 6, t = 4
and k = 2. The total computation time of the Maple algo-
rithms is limited to a couple of minutes for this example.

4.1. Numerical Results

The result of the quantification of the sin(a) table is illustrated
on Figure 1. The quantification error for point a is measured
by sin(a) − TS(a). The maximum error is around 8 LSBs
(1 LSB is equal to 2−wO), which is limited w.r.t. the t = 4
bits constraint used to quantify the table values. The 8 LSBs
maximal error means that the 3 last bits are wrong. Using
t = 3 leads to a maximal error around 60 LSBs (t = 2 leads
to 250+ LSBs maximal error). Similar results have been ob-
tained for the cos(a) table.

10

5

 0

 5

10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
ua

nt
ifi

ca
tio

n
er

ro
r

(#
LS

B
)

value a

Fig. 1. Quantification error for sin(a) table.

The products of the quantified values in the TS and TC
tables by the polynomials P and Q are performed using sev-
eral shifts and additions/subtractions. Table 1 presents the
distribution of all the possible shifts.

The quantification of the minimax polynomial approxi-
mations to sin(h) and cos(h) respectively gives:

P = x − x2

28
and Q = 1 − x

2
.

s TS TC s TS TC s TS TC

1 24 11 5 17 15 9 13 17

2 14 11 6 21 15 10 13 9

3 19 10 7 13 18 11 6 8

4 17 12 8 11 11 12 7 1

Table 1. Number of s-bit shifts due to the quantified values
stored in tables TS and TC.

The approximation error before and after quantification is
reported in Table 2.

function polynomial minimax after quantif.

sin(h) P 25.5 21.5
cos(h) Q 32.5 28.5

Table 2. Accuracy (number of correct bits) of the polynomial
approximations to sin(h) and cos(h) before and after quan-
tification of the coefficients (0 ≤ h ≤ 2−6).

As the target accuracy is small, the quantified polynomial
for cos(h) corresponds to the Taylor series expansion. But
it is not usually the case (e.g., the approximation to the sine
function in this example or example from Section 3.2).

The numerical quality of the final results is estimated by
measuring the total error using for the sine function sin(x) −
sinimpl(a + h) where sinimpl(a + h) is the result of the ac-
tual implementation of equation (3). This total error of the
proposed method for the sine function is illustrated on Fig-
ure 2. The total error corresponding to the cosine function is
illustrated on Figure 3.

10

5

 0

 5

10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
ot

al
 e

rr
or

 (
#L

S
B

)

argument x

Fig. 2. Total error for sin(x) using the proposed method.

III 994

15

10

5

 0

 5

10

15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
ot

al
 e

rr
or

 (
#L

S
B

)

argument x

Fig. 3. Total error for cos(x) using the proposed method.

4.2. Implementation Results on FPGAs

We have implemented the operator on Virtex Xilinx FPGAs.
The implementation results have been obtained using Xilinx
ISE tools. Standard effort has been used both for synthesis
and place-and-route (P&R) steps. The reported results are
post-P&R values. Area and period are reported in number of
slices and in nanoseconds respectively. The reported area in-
cludes all the tables implemented using the distributed mem-
ory ressources of the FPGA.

Table 3 presents the implementation results for the 12-
bit simultaneous sine and cosine evaluation example. It also
presents the comparison to two other methods for the approx-
imation to the sine function: the multipartite method from [2]
and the single multiplication second order (SMSO) from [4]
for similar average accuracy. The reader should keep in mind
that the two other methods only provide an approximation to
the sine function and not the simultaneous sine and cosine
functions. So, in practice, the proposed method shows both
speed and area improvements even for a small accuracy.

area speed

method [# slices] [ns]

this work (sin, cos) 79 16

multipartite (sin) 76 18

SMSO (sin) 59 17

Table 3. Implementation results and comparisons on Virtex
FPGAs.

5. CONCLUSION

We have presented a method for moderate-precision approx-
imation to the sine and cosine functions simultaneously in
hardware. This method allows to evaluate both functions in

about the same time as to compute only one of them. The
obtained operators provide very small average error with rea-
sonable maximum error. This makes our method suitable for
some applications in digital signal or image processing.

The proposed method uses trigonometric identities, small
lookup tables and low-degree polynomial approximationswith
very sparse coefficients. It leads to fast and small architec-
tures. It requires at most one small multiplication, all other
multiplications have been transformed into additions or sub-
tractions. A Maple program generates all the polynomial co-
efficients and tables values used for a given set of parameters.
The proposed method is efficient for simultaneous evaluation
of sine and cosine functions, more efficient methods may be
used when dealing with only one function (e.g. [4]).

In the future, we will study the relations between the pa-
rameters (wI , wO , m, d, k and t) and try to use centered in-
terval for h.

6. REFERENCES

[1] J.-M. Muller, Elementary Functions: Algorithms and Im-
plementation, Birkhäuser, Boston, 1997.

[2] F. de Dinechin and A. Tisserand, “Multipartite tables
methods,” IEEE Transactions on Computers, vol. 54, no.
3, pp. 319–330, Mar. 2005.

[3] M. Schulte and J. Stine, “Approximating elementary
functions with symmetric bipartite tables,” IEEE Trans-
actions on Computers, vol. 48, no. 8, pp. 842–847, Aug.
1999.

[4] J. Detrey and F. de Dinechin, “Second order function
approximation using a single multiplication on FPGAs,”
in 14th International Conference on Field-Programmable
Logic and Applications. Aug. 2004, pp. 221–230, LNCS
3203.

[5] P. Markstein, “Accelerating sine and cosine evaluation
with compiler assistance,” in Proc. of International Sym-
posium on Computer Arithmetic (ARITH16), J.-C. Bajard
and M. Schulte, Eds., Santiago de Compostela, Spain,
June 2003, pp. 137–140, IEEE Computer Society.

[6] M. D. Ercegovac and T. Lang, Digital Arithmetic, Mor-
gan Kaufmann, 2003.

[7] E. Remes, “Sur un procédé convergent d’approximations
successives pour déterminer les polynômes
d’approximation,” C.R. Acad. Sci. Paris, vol. 198,
pp. 2063–2065, 1934.

III 995

