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Abstract— MAXFLAT FIR digital filters have smoothest and 

the most accurate magnitude responses among all the available

types of FIR digital filters. However, the transition bands of

MAXFLAT filters are relatively wider, and this makes them

unattractive in certain applications. Traditionally, low/high

pass MAXFLAT FIR filters are designed to satisfy MAXFLAT

constraints at ends of the frequency band. In this paper, we

present two new designs of halfband low/high pass filters that 

satisfy these constraints at the middle of the pass and stop 

bands. The first design is obtained by solving a system of linear 

equations obtained by applying MAXFLAT constraints to the

magnitude response of the filter, while the second design is a

transformation of one of our previous designs of maximally 

linear digital differentiators. Design examples show that the

transition bands of the presented designs are narrower as

compared to traditional designs.

I. INTRODUCTION

Maximally flat (MAXFLT) finite impulse response (FIR)
digital filters (DFs), introduced by Hermann [1] in 1971, are
known for their design simplicity, accuracy and high 
stopband attenuations. The basic idea behind MAXFLAT
designs is to force the magnitude response to be as close to 
the ideal as possible, at one or more fixed points in the 
frequency band. The resultant filters have highly smooth
ripple-free magnitude responses in narrow regions centered
at the points at which maximal flatness (MAXFLAT)
constraints were applied. Classical MAXFLAT designs
involve approximation of the desired frequency response by
some suitable polynomial like a Hermite [1], Krawtchouk [2]
or Bernstein polynomial [3] etc., which is then mapped to the
filter function by certain transformations. The impulse
response (IR) coefficients of the filters designed using these
algorithms can be calculated using inverse discrete Fourier
transform (IDFT).

Halfband low/high pass FIR DFs have cutoff frequency

at the middle of the frequency band = /2, and are widely

popular due to the fact that almost half of their IR
coefficients are zeros, which leads to computationally
efficient implementations. Halfband filters find several

applications in filter banks, wavelets based compression and
multirate techniques, and several designs and
implementation tricks have been proposed for these filters
including both MAXFLAT and ripple designs [4-11].
Gumacos [4] presented simplified expressions for the IR
coefficients of MAXFLAT halfband designs in 1978.
Samadi et. al. presented designs for generalized halfband
MAXFLAT filters [5] and an efficient implementation of 
these filters was given by Pei et. al. in [6].

The transition bands of the existing MAXFLAT DFs are 
relatively wider and can be narrowed only by increasing the
length of the filter. Almost all available MAXFLAT low /
high pass designs satisfy the MAXFLAT constraints at zero

frequency =0 and the Nyquist frequency = . In this

paper we present a new design for MAXFLAT halfband
low/high pass filters which satisfy the MAXFLAT 

constraints at middle of their pass and stop bands, i.e., at =

/4 and =3 /4, and have relatively narrower transition

bands as compared to existing MAXFLAT designs. These

filters however have poor performance at =0 and = .

We present another MAXFLAT halfband design, by
transforming an existing design of digital differentiators

(DDs) [12], having maximal linearity (MAXLIN) at  = .

Like above-mentioned new designs, these halfband designs
also satisfy MAXFLAT constraints at the middle of their
pass and stop bands; however their order of flatness is one
less than the order of flatness of the above-mentioned
designs based on MAXFLAT constraints. This extra degree
of freedom makes the magnitude response smoother in the
lower and upper ends of the frequency band, with almost no
effect on the width of the transition band. Design examples
are presented to compare the two proposed designs with each 
other and existing MAXFLAT halfband designs.

II. MAXFLAT HALFBAND LOWPASS DIGITAL FILTERS

A. Based on Direct Application of MAXFLAT Constraints

An ideal halfband lowpass magnitude response can be
written as 
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Since the ideal responses cannot be achieved with filters of 
finite lengths, the MAXFLAT design criteria is to force the
magnitude response, and as many as possible its higher
derivatives, to have the values equal to the ideal at a single 

specified frequency 0. In other words, for a filter to be

MAXFLAT at a certain frequency 0, lying in the passband,

its magnitude response )(H should satisfy the following

conditions
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where L is a suitable number depending on the length of the
filter.

It can be shown that the central coefficient of a halfband 
FIR DF is equal to 0.5 and all even indexed coefficients are 
zeros. Therefore magnitude response of a type I (odd number
of even-symmetric coefficients) FIR DF of length 4N 1 can
be expressed as
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where ’s are the IR coefficients and have

even symmetry.

NnNhn 22,

The existing MAXFLAT designs satisfy these constraints

at the ends of the frequency band, =0 and = . Here, we

derive a new design satisfying the constraints at = /4 and

=3 /4. The stopband of MAXFLAT halfband DFs is

exactly an inverted mirror image of the passband, and
therefore applying MAXFLAT constraints at a certain

frequency 0 in the passband automatically satisfies the

constraints at 0 in the stopband.

Applying the MAXFLAT constraints of Eqs. (2-3) to

Eq. (4), at middle of the passband = /4, we get the

following set of linear equations:
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The (N x N) coefficients matrix of these equations is
Vandermonde matrix and therefore can be written in closed 
from, and this facilitates finding the solution of the equations.
After some mathematical derivations, the complete set of IR
coefficients h can be written in closed form as:
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where the double factorial of an integer m is defined as 

)1)...(4)(2(!! mmmm .

Magnitude response of a halfband lowpass filter designed
this way is shown in Fig. 1, along with a traditional filter 

satisfying MAXFLAT constraints at =0. It can be seen that 

the transition band of the proposed filter is relatively narrow
but its performance has deteriorated at the ends of the
frequency band. Due to this reason, it can be used only in
very limited applications, where useful signal contents are
not very close to the ends of the frequency bands. In the next
subsection, we derive another MAXFLAT halfband design
with narrow transition bands and better performance at the
ends of the frequency band.

B. Based on Transformation of MAXLIN DDs

Magnitude response of an ideal DD for 20 can

be written as 

.2

0
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For a filter to be MAXLIN at a certain frequency

00 , its magnitude response )(D  should satisfy the

following conditions

,)( 00D (8)

and

,2,0

,1,1)(

0

Li

i

d

Dd
i

i

(9)

where L is a suitable number less than the length of the filter,

and depends on the value of 0 at which the MAXLIN 

constraints are applied.

Magnitude response of a type IV (even number of odd-
symmetric coefficients) FIR DD can be expressed as: 
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Fig. 1: Magnitude response of a presented halfband

lowpass filter (solid line) designed with Eq. (6) for length

of 55 (N = 14) compared with the traditional design of the

same length.
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Fig. 2: Magnitude response of a presented halfband

lowpass filter (solid line) designed with Eq. (13) for length

of 55 (N = 14) compared with the traditional design of the

same length.
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Fig. 3: Magnitude responses of presented halfband

lowpass filters, designed with Eq. (13) (solid line) and Eq.

(6) (dashed line), each of length 55 (N = 14). 
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where  are the IR coefficients. ,,2/1 NnNd n

Applying the MAXLIN constraints of Eqs. (8-9) to Eq.

(10), at middle of the frequency band = /2, we get a set

of equations similar to Eq. (5), which can be solved for d
into closed form as given below [12]:
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It can be noted from Eq. (7) that magnitude response of a DD
can be transformed to a halfband lowpass response by

a) taking its derivative with a suitable scaling factor, and

b) shrinking its width by half, i.e., fitting it in the region 
.0

In time domain, these transformations can be carried out on
IR coefficients of a DD given by Eqs. (11-12) as [13]:

i. Multiply  by (2n 1)/4, for)2/1(nd Nn1 .

ii. Insert a zero between every two consecutive
coefficients.

iii. Set the middle coefficient to ½. 

The resultant formulas for IR coefficients of halfband
lowpass DF can be written as: 
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where  is given by Eq. (12).nNS ,
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A filter designed by the above procedure is compared
with a traditional halfband lowpass filter in Fig. 2. Another
comparison is shown in Fig. 3, with the filter presented
earlier and given by Eq. (6). It can be noted from the figures
that the transition band of this new filter is almost as narrow
as that of the filter given by Eq. (6), and it has quite smooth
response at the ends of the frequency band. In fact, the 
maximum deviation from ideal is just 0.08% for the
presented example, and that occurs at the ends of the
frequency band, and is negligible for almost any application.

The reason of higher accuracy at the ends of the 
frequency band for filters designed by Eq. (13) compared to
those designed with Eq. (6) can be understood by looking at
the magnitude response of a DD given by Eq. (10). It can be
noted that although the design was carried out by applying

MAXLIN constraints at = /2, the first constraint (ideal

magnitude at certain frequency) is inherently satisfied at

=0 as well. Due to this reason, DDs designed by using Eq.
(11) have lesser relative errors at lower end as compared to 
the higher end of the frequency band. Therefore, the

derivatives of their frequency responses at =0 and =2 ,

which become the magnitudes of halfband filters at =0 and 

=  as a result of the above-mentioned transformations,

have smaller errors as compared to the designs of Eq. (6)

obtained by directly applying MAXFLAT constraints at =

/4.

Using the coefficients given by Eq. (6) in Eq. (4), it can 
be shown that for a filter of length 4N 1, the magnitude
response and its first N 1 derivatives have the ideal values,
i.e., all the N MAXFLAT constraints are satisfied. However, 
a filter of the same length designed Eq. (13) satisfies first
N 1 constraints, while the last constraint is not satisfied. The
effect on the transition band is however negligible, as can be 
seen in Fig. 3.

A halfband highpass frequency response can be obtained
simply by subtracting a halfband lowpass response from an 
allpass response. In time domain, it can be done by inverting
the sign of all coefficients in Eq. (6) and Eq. (13), except for

the central coefficients , that remain unchanged. 0h

C. Implementation Issues

It should be noted that determination of IR coefficients
for both of the presented designs given by Eq. (6) and Eq.
(13), respectively, involves computation of large factorials.
This seems computationally burdensome, however, both Eq.
(6) and Eq. (13) can be written in iterative forms, and
factorials need to be calculated only once for calculating the
first coefficient. All other coefficients can be calculated by
simple multiplications.

Similarly, in Eq. (12) can be written in an alternate

form as 

nNS ,

12

)1(4

12

)1(4
1

1

1

1

,
ni

S
nN

i

i

kN , (14)

in which the summation term is independent of n, and it

needs to be calculated only once, and therefore  can be

computed very efficiently. 

nNS ,

III. CONCLUSIONS

Explicit formulas for the impulse response coefficients of 
two new designs of MAXFLAT FIR halfband low/high pass
filters have been obtained. These filters satisfy MAXFLAT 
constraints at the middle of the pass and stop bands, and have
relatively narrow bands as compared to the existing
MAXFLAT halfband designs. One of the presented designs,
based on direct application of MAXFLAT constraints, is 
inaccurate at the ends of the frequency band. However, the 
other design derived from an existing design of maximally
linear digital differentiators, is quite accurate in the entire 
pass and stop bands.
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