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ABSTRACT
In this paper, a QR-RLS based Minimum Variance Distortionless

Responses (MVDR) method, and its systolic array processor, are

proposed. The QR-RLS based MVDR has many advantages, such as
numerical stability, computational efficiency and pipelined structure

in implementation. We also point out that the conventional method,

MVDR using QR-RLS method by directly forcing the desired sig-

nal to zero is not correct. Numerical experiments are carried out to
illustrate the effectiveness of the proposed method.

1. INTRODUCTION

Minimum variance distortionless response (MVDR) beamformer [1]

is a key algorithm in array signal processing. In the last decades, re-
search on its implementing using QR decomposition has been very

active [2–5]. The QR based method can easily be transformed to sys-

tolic implementation [6], which is very attractive for the demand for

sophisticated system with high throughput rate and superior numeri-
cal accuracy. The potential advantages of QR based method include

numerical stability, computational efficiency and fully pipelined struc-

ture.

A systolic array processor for MVDR is proposed in [4]. This
method does not require to compute the weight vector for computing

the residual signal. By comparing the recursive least square (RLS)

algorithm with MVDR, it seems easy to obtain the residual of the

MVDR from that of the RLS algorithm by forcing the desired input
data to be zero [4,7]. However, in this paper, we indicate that the di-

rectly mapping RLS to MVDR by forcing desired signal to be zero

has some problems. When the forgetting factor of the RLS method

is selected to be less than 1, the resulting method will produce zero
tap-weight vector eventually. The beamformer fails to work. After

a modification of QR-RLS MVDR [7], a new method is proposed

in this paper. The theoretical and numerical studies show that the

proposed method produces correct output and demonstrates high nu-

merical performance. Moreover, its systolic implementation is also
shown briefly.

This paper is organized as following. In Section 2, we briefly

compare the RLS and MVDR method. The mapping between these

two methods is also discussed. In Section 3, we analysis the mapping
in Section 2 and indicate that it is not correct. A modified QR-RLS

MVDR method is proposed to solve the problem. Some numerical

experiments are carried out in Section 4 to show the performance of

the proposed method. Followed by a brief conclusion in Section 5.

2. QR-RLS AND MVDR BEAMFORMER

The RLS adaptive filter is formulated as [7]

min
w(n)

n∑
i=1

λ
n−i|e(i)|2,

e(i) = d(i) − w
H(n)u(i),

(1)

where 0 < λ ≤ 1 is the exponential forgetting factor, e(i) is the
difference between the desired signal d(i) and the output signal of

adaptive filter wT (n)u(i). w(n) is tap-weight vector and u(i) is

the tap-input vector,

w(n) = [w0(n) w1(n) · · · wM−1(n)]T ,

u(i) = [u(i) u(i − 1) · · · u(i − M + 1)]T .
(2)

The optimal solution ŵ(n) of (1) is given as

ŵ(n) = Φ−1(n)z(n), (3)

where

Φ(n) = λΦ(n − 1) + u(n)uH(n),

z(n) = λz(n − 1) + u(n)d∗(n).
(4)

Using the matrix inversion Lemma [7], a recursive least square
method is derived. The optimal solution of the least square prob-

lem can also be solved using QR based method due to its numerical

stability, pipeline implementation and robustness to finite precision

problem. As shown in [7, 8], the QR-RLS algorithm is given by⎡
⎢⎣λ

1

2 Φ
1

2 (n − 1) u(n)

λ
1

2 pH(n − 1) d(n)
0T 1

⎤
⎥⎦ Θ(n) =

⎡
⎢⎢⎣

Φ
1

2 (n) 0

pH(n) ξ(n)

γ
1

2 (n)

uH(n)Φ
−H

2 (n) γ
1

2 (n)

⎤
⎥⎥⎦ ,

(5)

where Φ
1

2 (n − 1) is the square-root of Φ(n − 1), i.e., Φ(n − 1) =

Φ
1

2 (n − 1)Φ
H

2 (n − 1). The matrix Θ(n) is any unitary rotation

that operates on the elements of the input data vector u(n) in the

prearray, annihilating then one by one so as to produce a block zero
empty in the top block row of the postarray. The vector p(n) is

defined as

p(n) = Φ−
1

2 (n)z(n).

To apply the well studied QR-RLS method in adaptive beam-

formeing, in this section, the least square MVDR beamformer is

compared with the RLS method. The MVDR beamformer is for-
mulated as

min
w(n)

n∑
i=1

λ
n−i|e(i)|2,

e(i) = w
H(n)u(i),

s.t. w
H(n)s(θ0) = 1,

(6)

where s(θ0) is the array steering vector corresponding to the direc-

tion of the target source, θ0. The optimal solution ŵ(n) is given

by

ŵ(n) =
Φ−1(n)s(θ)

sH(θ)Φ−1(n)s(θ)

=
Φ−H/2(n)a(n)

||a(n)||2
,

(7)
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QR-RLS MCDR Description

e(n) −e′(n) Estimation error

d(n) 0 Desired signal

p(n) a(n) Auxiliary vector
u(n) u(n) Snapshot

Table 1: Correspondence between the QR-RLS adaptive filtering
and MVDR beamforming variables

where

a(n) = Φ−
1

2 (n)s(θ). (8)

Therefore, the output error signal e(n) is

e(n) = ŵ
H(n)u(n) =

aH(n)Φ−
1

2 (n)u(n)

||a(n)||2
�

e′(n)

||a(n)||2
(9)

If we reexpress e(n) as

e(n) = d(n) − ŵ
H(n)u(n), (10)

compare it with (1), the QR-RLS based MVDR can be deduced by

replacing the variables in QR-RLS in (5) by the corresponding vari-
able of MVDR as shown in Table 1. Detail discussion of this map-

ping can be found in [7].

3. PROPOSED METHOD

Unfortunately, the QR-RLS MVDR in [7] which is derived using the

idea presented in Section 2 is not correct. The algorithm can only

work for λ = 1. If λ < 1, the output error e′(n) as well as ||a(n)||2

approach to zeros after sufficient number of iterations.

The reason why QR-RLS MVDR in [7] cannot work can be ex-

plained as following. Compare the output errors in (10), (6) and

(1), it seems that the MVDR can be implemented as RLS method by
forcing d(n) in (10) to zero. However, since d(n) also affect the cal-

culation of the optimal weight ŵ(n), forcing d(n) to zero will result

in zero tap-weight vector. Refer to (4), we find that if d(n) = 0, the

vector z(n) can be expressed as

z(n) = λz(n − 1) = λ
n
z(0)

where z(0) is the initial vector. If λ < 1, we have

lim
n→∞

z(n) = 0

Therefore, the optimal solution ŵ(n) approaches to zero. Similar

conclusion can also be derived that ||a(n)||2 approaches zero.

This is a basic concept in adaptive filtering. It is known that the

adaptive filter only works when the desired signal is correlated with

the input signal, otherwise, zero tap-weight vector produces. If the
desired signal d(n) is forced to zero, it must be uncorrelated with

any other signals. Consequently, it produces zero tap-weight. Fortu-

nately, for the MVDR beamformer, the z(n) can be considered as the

array steering vector s(θ0), which is given and fixed. The recursive
update of s(θ0) is not required. Therefore, we can modify the QR-

RLS MVDR as the form shown in Theorem 1. It produces correct

output signal and demonstrates superior numerical properties.

Theorem 1. The QR-RLS based MVDR beamformer can be formu-
lated as following,

⎡
⎢⎣ λ

1

2 Φ
1

2 (n − 1) u(n)

λ
−1

2 aH(n − 1) 0
0T 1

⎤
⎥⎦ Θ(n) =

⎡
⎢⎢⎣

Φ
1

2 (n) 0

aH(n) − e′(n)

γ
1

2 (n)

uH(n)Φ−
H

2 (n) γ
1

2 (n)

⎤
⎥⎥⎦

u1(3), u1(2), u1(1)

u2(2), u2(1), 0

u3(1), 0, 0

0, 0, 0

1

e′(n)
×

c s

uin uout

uout ← cuin − sλ−1/2x
x ← suin + cλ−1/2x

Fig. 1: Systolic array implementation of the proposed beamformer.

where
a(n) = Φ−

1

2 (n)s(θ0).

The matrix Θ(n) is any unitary rotation that operates on the ele-
ments of the input data vector u(n) in the prearray, annihilating
then one by one so as to produce a block zero empty in the top block
row of the postarray. The alternative output signal e′(n) is obtained
as

e
′(n) = −

[
−

e′(n)

γ
1

2 (n)

] [
γ

1

2 (n)
]
,

and the output residual signal e(n) is

e(n) =
e′(n)

||a(n)||2
.

Proof. Refer to Appendix A.

Remark 1. The quantities for calculating e′(n) can be obtained in
the transformed matrix. The residual signal e(n) can be calculated
by normalized e′(n) by the norm of a(n) as shown in (9). As shown
in the Appendix A, the proposed method does not change s(θ0) dur-
ing updating for any value of λ. The problem of the conventional
QR-RLS MVDR is solved.

The systolic implementation of the proposed method is shown

in Fig. 1. For simplicity, we assume that there are three sensors.
Compared with the implementation in [7], the difference is that the

last processing element row (grayed ones) is changed. The other

processing elements can be found in [7].

4. NUMERICAL STUDY

In this section, some numerical experiments were carried out to il-

lustrate the performance of the proposed method. A uniform linear

array (ULA) with eight sensors and half-wavelenght inter-elements

space is used in simulation. The target signal is simulated as random
signal with Gaussian distribution. The direction of the target signal

is assumed from the broadside of the ULA. The performance of QR-

RLS [7] and the proposed QR-RLS is studied. In the simulations, the

alternative output signal e′(n) and the norm corrected output signal
e(n) are both illustrated. Moreover, we also compare the differences

of e′(n) or e(n) between the ideal signals.

In the first experiment, the performance of each algorithm versus

the forgetting factor is studied. In the simulation, we use 100 snap-

shots. The results show in Fig. 2 was obtained when λ = 0.999999.
It seems that both algorithms work. It should be noted that the error
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Fig. 2: Comparison of the error between e′(n) and the ideal one

when λ = 0.999999
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Fig. 3: Comparison of the error between e′(n) and the ideal one
when λ = 0.8

of the proposed method is almost zero. This is similar in other exper-

iments. However, the QR-RLS MVDR method produces output with
larger error than that of the proposed method. We change λ = 0.8
and show the results in Fig. 3 and 4. It is clear that QR-RLS MVDR

method has larger error, especially for the output signal e(n). The

reason is that with small λ, ||an||
2 decreases quickly. Since the out-

put signal e(n) is the the divided value of e′(n) to ||a(n)||2, small

value of ||a(n)||2 causes serious numerical problem.

In Fig. 5, we show the performance of each beamformer ver-

sus different value of λ. It is clear that error of QR-RLS MVDR

beamformer increases with the decreasing of λ. Strictly speaking, it
only works when λ = 1. This conclusion also be supported by the

simulation results shown in Fig. 2 - 4.

In Fig. 6 and 7, the simulation was carried out with λ = 0.999.

In the beginning of the filtering, it seems QR-RLS MVDR produces

correct output. However, with the increasing iteration number, the
alternative output of QR-RLS MVDR approaches zero and its out-

put diverges. This diverges is due to numerical problem. For the

proposed method, it works well. This experiment shows that the

conventional QR-RLS MVDR fails to work even with λ ≈ 1 after

sufficient number of iterations.

5. CONCLUSION

Direct mapping QR-RLS to QR-RLS MVDR beamformer was stud-
ied in some literatures. In this paper, we proved that the direct map-

ping by forcing desired signal of QR-RLS to be zero is not correct.

The conventional QR-RLS MVDR method can only works when

λ = 1. If λ < 1, the output signal of QR-RLS MVDR has serious
numerical problem, especially when the system works for long time.
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Fig. 4: Comparison of the error between e(n) and the ideal one

when λ = 0.8
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Fig. 5: Average error power versus different value of λ (1000
iterations)
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Fig. 6: Comparison of the error between e′(n) and the ideal one

when λ = 0.999
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Fig. 7: Comparison of the error between e(n) and the ideal one

when λ = 0.999

The proposed method solves this numerical problem efficiently. It
is obtained by transforming QR-RLS to MVDR problem with some

additional modifications. The theoretical and numerical studies in-

dicate that the proposed method has high performance and stable

numerical properties.

A. THE PROOF OF THEOREM 1

Proof.

C1 =

⎡
⎢⎣ λ

1

2 Φ
1

2 (n − 1) u(n)

λ
−1

2 aH(n − 1) 0
0T 1

⎤
⎥⎦

⎡
⎢⎣ λ

1

2 Φ
1

2 (n − 1) u(n)

λ
−1

2 aH(n − 1) 0
0T 1

⎤
⎥⎦

H

=

⎡
⎢⎣λΦ(n − 1) + u(n)uH(n) Φ

1

2 (n − 1)a(n − 1) u(n)

aH(n − 1)Φ
1

2 (n − 1) λ−1||a(n − 1)||2 0
uH(n) 0 1

⎤
⎥⎦ ,

C2 =

⎡
⎢⎢⎣

Φ
1

2 (n) 0

aH(n) −e′(n)

r
1

2 (n)

uH(n)Φ
−1

2 (n) r
1

2 (n)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Φ
1

2 (n) 0

aH(n) −e′(n)

r
1

2 (n)

uH(n)Φ
−1

2 (n) r
1

2 (n)

⎤
⎥⎥⎦

H

=

⎡
⎢⎣ Φ(n) Φ

1

2 (n)a(n) u(n)

aH(n)Φ
H

2 (n) c22 c23

uH(n) c∗23 c33

⎤
⎥⎦ ,

where

c22 = ||a(n)||2 + |e′(n)|2r−1(n),

c23 = a
H(n)Φ

−1

2 (n)u(n) − e
′(n),

c33 = u
H(n)Φ−1(n)u(n) + r(n).

According to Lemma in [8], we need to prove that C1 = C2.

For the (1, 1)th element,

Φ(n) = λΦ(n − 1) + u(n)uH(n).

For the (1, 2)th element,

s(θ0) = Φ
1

2 (n)a(n) = Φ
1

2 (n − 1)a(n − 1),

therefore, in the recursive update, no effect of forgetting factor on the

array steering vector s(θ0). This guarantees that the output signal
does not approach zero in recursive updating.

For the (2, 2)th element,

||a(n)||2 + |e′(n)|2r−1(n)

= a
H(n)a(n) +

aH(n)Φ
−1

2 (n)u(n)uH(n)Φ
−1

2 (n)a(n)

1 − uH(n)Φ−1(n)u(n)

= a
H(n)

(
I +

Φ
−1

2 (n)u(n)uH (n)Φ
−1

2 (n)

1 − uH(n)Φ−1(n)u(n)

)
a(n)

= a
H(n)

(
I− Φ

−1

2 (n)u(n)uH(n)Φ
−1

2 (n)
)
−1

a(n)

= a
H(n)Φ

1

2 (n)
(
Φ(n) − u(n)uH(n)

)
−1

Φ
1

2 (n)a(n)

= a
H(n)Φ

1

2 (n)λ−1Φ−1(n − 1)Φ
1

2 (n)a(n)

= λ
−1

a
H(n − 1)a(n − 1)

= λ
−1||a(n − 1)||2

For the (2, 3)th element,

e
′(n) = a

H(n)Φ
−1

2 (n)u(n)

which is defined in (9).

Since r(n) is the conversion factor [7], the proof of the (3, 3)th
element is straightforward.

The matrices C1 and C2 are both Hermitian matrices. The other

elements can be easily verified.
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