
FFTSS: A HIGH PERFORMANCE FAST FOURIER TRANSFORM LIBRARY

Akira NUKADA

CREST, JST
Department of Computer Science, University of Tokyo

ABSTRACT

In this paper, we introduce a new Fast Fourier Transform
(FFT) library. In developing this software, we focus on the
efficient execution of the floating-point operation instruc-
tions. To achieve high performance on various processors,
we provide the source code which compilers can optimize
easily. Since the compilers provided by processor vendors
have powerful optimizers for loop sentenses, the code gen-
erated by them will run very fast as long as the iteration
count of the inner most loop is large enough. In such a
case, the library outperforms other libraries even provided
by processor vendors.

1. INTRODUCTION

Today, there are many FFT libraries in the world. Each
of them has its own characteristics. The processor vendors
provide FFT libraries such as IBM ESSL library for Pow-
erPC processors and Intel Math Kernel Library (MKL) for
Intel Processors. On the other hand, various open-source li-
braries are provided by many developers. Especially FFTW
[1] library is the most popular as cross-platform FFT library.

We advanced the research in the Scalable Software In-
frastructure(SSI) [2] Project, and released the FFTSS library
as a part of the results of the project. The high performances
on various processors are requested for an open-source li-
brary. For this reason, the FFTSS library package contains
many kinds of FFT kernel sets, and the best kernel set is se-
lected at runtime. The kernels are written as the codes which
the compilers can easily optimize. In addition, the library
includes the kernels which use the special features depen-
dent on the types of the processors, and includes the kernels
which are opmtized for specific processor. The radix-8 ker-
nels [3] in the library are based on a new kernel we have
developed.

2. CODING POLICY

Open-source libraries are usually described in the high level
programming languages such as C, Fortran. Users compile
them, and then execute their application programs. The op-

timization by the compilers greatly influence the execution
performance of the application.

The approach of the FFTSS library is to prepare the code
which the compilers can optimize easily. The library is writ-
ten mainly in C language. To give more information to the
compiler, const keyword and C99 keywords such as inline,
restrict, complex are used. Especially, the const and restrict
keywords are important for using the pointers to the arrays
in C programs. Using these keyword allows the compilers’
aggressive optimizations.

In addition, we can add hints based on the fact that this
is an FFT program. A typical FFT program is described by
the following, double loop sentence.

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
for (j = 0; j < N2; j++)

{ compute kernel. }
}

The iteration count of the inner loop may becomes one or
small number. In such a case, the efficiency of the instruc-
tion execution is heavily degraded. We certainly know the
fact that the iteration count of the inner loop becomes smaller
and smaller, and finally it becomes one.

Traditionally, the technique of loop exchange is used
against this problem. If the iteration count of the inner loop
is smaller than that of the outer loop, then exchange the in-
ner and out loop.

But in case of the typical FFT program, the exchange in-
crease the load operations of twiddle factors. Instead of the
loop exchange, we decide to use loop unrolling of the in-
ner loop. The inner loop is unrolled only when the iteration
count is small enough.

In case of N2=1, the double loop is converted as follows.

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
{ compute kernel. }

}

In case of N2=4, the double loop is converted as follows
in the same manner.

III ­ 9801­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

in(0)

in(4)

in(2)

in(6)

in(1)

in(5)

in(3)

in(7)

ω4j
N

ω2j
N

ω6j
N

ωj
N

ω5j
N

ω3j
N

ω7j
N ����

����

����

����

����

����

����

����

−i

−i

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

ω1
8

−i

ω3
8 �

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

out(0)

out(1)

out(2)

out(3)

out(4)

out(5)

out(6)

out(7)

Fig. 1. Conventional radix-8 FFT kernel

for (i = 0; i < N1; i++) {
{ load twiddle factors here. }
{ compute kernel. }
{ compute kernel. }
{ compute kernel. }
{ compute kernel. }

}

Since these conversions increase the program size, the
unrolling for large N2 may cause instruction cache misses.
For this reason, this unrolling is limited to the cases of N2 ≤
4.

3. SPECIAL INSTRUCTIONS

Processors support special instructions that greatly contribute
to the performance improvement. In case of some special
instructions, we need to write the code which explicitly use
those instructions. The FFTSS library currently supports
the following instructions.

3.1. Fused Multiply-Add (FMA) instructions

Many processors such as PowerPC, MIPS and IA-64 sup-
port the FMA instructions. An FMA execution unit multi-
plies two numbers and then adds a number to the result of
the multiplication. The FMA unit is occupied even when
only addition, subtraction or multiplication is to be com-
puted. For these processors, FFT kernels with a smaller
number of FMA instructions are developed [4, 5, 6]. The
FFTSS library includes some FFT kernels in which mul-
tiplications of complex numbers are converted as follows
using Linzer’s idea [4].

ax ± by → a{x ± b

a
y}

in(0)

in(4)

in(2)

in(6)

in(1)

in(5)

in(3)

in(7)

ω4j
N

ω2j
N

ω6j
N

ω4j
N

ω4j
N ����

����

����

����

����

����

����

����

−i

ωj
N

ωj
Nω1

8

ω3j
N

ω3j
N ω3

8

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� −i

−i �
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

out(0)

out(1)

out(2)

out(3)

out(4)

out(5)

out(6)

out(7)

Fig. 2. New radix-8 FFT kernel

The multiplication of a is coupled with additions or subtrac-
tions of successive butterfly operations.

3.2. Single Instruction Multiple Data (SIMD) instruc-
tions

The latest processors support some kinds of SIMD instruc-
tions. The FFTSS library supports Intel SSE2/SSE3 instruc-
tions. Especially for Intel processors, the use of these in-
structions is in fact indispensable.

3.3. PoewrPC440 Double Hammer FPU

PowerPC440 Double Hammer FPU [7] is installed in the su-
per computer BlueGene. The processor core has two FPU
units and both of them are controlled by a series of instruc-
tions like SIMD instructions.

4. RADIX-8 KERNEL

Fig.1 shows conventional radix-8 FFT kernel. In the con-
ventional radix-8 kernel, input data is multiplied by twiddle
factors, and then 8-point FFT is computed.

The radix-8 kernels used in the FFTSS library are based
on the different radix-8 kernel described in Fig.2.

The new radix-8 kernel does not decrease the number
of floating-point operations compared with the conventional
one. The difference between them is the timings of the mul-
tiplications of the twiddle factors. In case of the conven-
tional one, all multiplications concentrate on the first butter-
fly stage(left in the figure). This causes the congestion of
the load instruction. On the other hand, multiplications are
distributed to the first and second butterfly stages in case of
the new kernel.

Linzer’s radix-8 kernel for FMA is based on the con-
ventional radix-8 kernel. The new radix-8 kernel also can

III ­ 981

be converted into FMA-style in the same manner. For pro-
cessors with the FMA instructions, we prepare the kernels
based on the new radix-8 kernel.

5. TWIDDLE FACTOR TABLES

In general, we prepare trigonometric tables called ’twiddle
factor tables’ required in computing FFT. The sizes of the
tables are listed in Table 1.

The conventional radix-8 kernel requires the twiddle fac-
tor tables only for radix-8. On the other hand, the new radix-
8 kernel uses the same twiddle factor tables as those of the
radix-4 kernels. This is because the new radix-8 kernel con-
sists of a radix-4 kernel, two radix-2 kernels and two split-
radix [8] kernels. All of them are subsets of the radix-4
kernel. This makes it easy to use both radix-4 and radix-8
kernels. In the implementation of the FFTSS library, pow-
ers of two transforms are computed with radix-4 and radix-8
kernels. In such a case, it becomes the advantage that they
can use the shared twiddle factor tables.

The table for the FMA kernels used in the FFTSS library
is described below.

wn(2k) = cos(2πk/N)/ sin(2πk/N)
0 ≤ k < N/2

wn(2k + 1) = sin(2πk/N)
0 ≤ k < N/2

wn(2k + 3N/2) = cos(6πk/N)/ sin(6πk/N)
0 ≤ k < N/4

wn(2k + 3N/2 + 1) = sin(6πk/N)/ sin(2πk/N)
0 ≤ k < N/4

In the radix-4 and radix-8 kernels for FMA,
cos(6πk/N)/ sin(6πk/N) and sin(6πk/N)/ sin(2πk/N)
are required at the same time. Therefore, this table is de-
signed to load the pair from a continuous address. That is
important not only for the processors with packed load in-
structions, but also for the efficient use of the cache memory.

6. LIBRARY INTERFACES

The interfaces of the FFTSS library are designed to be al-
most compatible with those of FFTW library. We provide
a header file “fftw3compat.h” for FFTW users. If you have
application programs written for fftw3, the porting to the
FFTSS library is very simple. All you have to do is to
change “fftw3.h” into “fftw3compat.h”. Unfortunately, the
current version does not support all of the FFTW features.

The limitations of the current version are:

• The size of transform must be powers of two.

• Only one-dimensional transform is supported.

• Only double precision complex-to-complex transform
is supported.

As long as only the supported function is used, your appli-
cation will work well.

The package of the FFTSS library contains various FFT
kernel sets such as normal, FMA, SSE2, SSE3, etc. In the
subroutine “fftss plan dft 1d()”, which creats a plan of one-
dimensional transform, the best kernel sets are selected by
measuring the performance of them actually.

To compute the powers of two transforms, the FFTSS li-
brary only uses radix-4 and radix-8 kernels. In case of latest
processors, one of them will be the best radix size, consid-
ering the bandwidth of the cache memory. We concern the
following four about the combination of them.

• priority on radix-4, radix-4 before radix-8.

• priority on radix-4, radix-8 before radix-4.

• priority on radix-8, radix-4 before radix-8.

• priority on radix-8, radix-8 before radix-4.

For example, suppose that the radix-4 is better if the data is
in L1-cache, and the radix-8 is better if the data is in L2-
cache. In this case, the better radix is automatically selected
by measuring the performance of those combinations.

The other combinations are ignored to save the cost of
creating plan.

7. PERFORMANCE EVALUATIONS

Fig.3 shows the performances of the FFTSS library, IBM
ESSL for Linux version 4.2, and FFTW library version 3.0.1.
The machine used in the evaluations is IBM OpenPower
710, running SuSE Linux 9 (Linux kernel 2.6.5). Two Power5
1.65GHz (DualCore) processors and 1GB memory are in-
stalled in the system. But only one processor (one core) is
used in the executions

For each library, the best compiler and compiler options
are selected. In case of FFTSS, IBM XL C compiler 7.0.1 is
used and CFLAGS is set to ‘-O3 -qarch=auto -qtune=auto
-qansialias -qlanglvl=extc99’. In case of FFTW, gcc 4.0.1 is
used and CFLAGS is set to ‘-O3 -fomit-frame-pointer -fno-
schedule-insns -fstrict-aliasing -mcpu=powerpc’, which is
defined by the configure script.

Using these libraries, the times required to repeat the
backward and forward transforms 300/log2N times are mea-
sured. We assume the number of floating-point operations
is 5N log2 N . The performances in Gflops are calculated
from them.

Since the Power5 processor has two FMA units, 1.65GHz
processor can execute 6.6G floating-point operations per sec-
ond.

The size of transform in Fig. 3 is a range from 256 to
8192. In this range, the performance of the FFTSS library
outperforms the other libraries by maximum 18%.

III ­ 982

Table 1. The sizes of twiddle factor tables for computing an N -point FFT(N = 2m)
Normal Optimized for FMA

Radix-4 Radix-8 Radix-4 Linzer’s radix-8 New radix-8
sin(x) 3N/4 7N/8 N/2 3N/8 N/2
cos(x) 3N/4 7N/8 0 0 0
cos(x)/ sin(x) 0 0 3N/4 7N/8 3N/4
sin(3x)/ sin(x) 0 0 N/4 N/4 N/4
sin(5x)/ sin(x) 0 0 0 N/8 0
sin(7x)/ sin(x) 0 0 0 N/8 0
sin(x)/

√
2 0 0 0 N/8 0

Total 3N/2 7N/4 3N/2 15N/8 3N/2

�

���

�

���

�

���

�

��� ��� ���� ���	 ��
� 	�
�

��
�

�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�

�

����� �������� ����

Fig. 3. The performance comparison between FFTSS and
ESSL and FFTW.

8. CONCLUDING REMARKS

We have introduced the design and implementation of the
FFTSS library. The development of this library is focused
on how to prepare the code which compilers can easily op-
timize.

We can assist the optimization of the compilers by giv-
ing a lot of information we have, in various ways. As the
result, the library achieved higher performance than the li-
braries provided by processor vendors.

The FFTSS library is available at the following URL.
http://ssi.is.s.u-tokyo.ac.jp/fftss/

ACKNOWLEDGEMENT

This work has been supported by CREST of JST(Japan Sci-
ence and Technology Agency).

9. REFERENCES

[1] Matteo Frigo and Steven G. Johnson, “The design and
implementation of FFTW3,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005, special issue on ”Pro-
gram Generation, Optimization, and Platform Adapta-
tion”.

[2] SSI Project, http://ssi.is.s.u-tokyo.ac.jp/.

[3] G. D. Bergland, “A Fast Fourier Transform Algorithm
Using Base 8 Iterations,” Math. Comp., vol. 22, pp.
275–279, 1968.

[4] E. N. Linzer and E. Feig, “Implementation of Effi-
cient FFT Algorithms on Fused Multiply-Add Archi-
tectures,” IEEE Trans. Signal Processing, vol. 41, pp.
93–107, 1993.

[5] S. Goedecker, “Fast Radix 2,3,4 and 5 Kernels for Fast
Fourier Transformations on C omputers with Overlap-
ping Multiply-Add Instructions,” SIAM J. Sci. Comput.,
vol. 18, pp. 1605–1611, 1997.

[6] H. Karner and et al., “Multiply-Add Optimized FFT
Kernels,” Math. Models and Methods in Appl. Sci., vol.
11, pp. 105–117, 2001.

[7] C. D. Wait, “IBM PowerPC 440 FPU with complex-
arithmetic extensions,” IBM Journal of Research and
Development, vol. 49, no. 2/3, pp. 249–254, 2005.

[8] P. Duhamel and H. Hollmann, “Split-Radix FFT Algo-
rithm,” Electron. Lett., vol. 20, pp. 14–16, 1984.

III ­ 983

