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ABSTRACT 
This paper presents a VLSI implementation of a Low-
Density Parity Check (LDPC) decoder that achieves 2.4 
Gbps throughput yet permits real-time configuration of (1) 
rate, (2) code length, and (3) the parity equations. This 
decoder can be programmed in the field, much like an 
FPGA. We describe the architectural, circuit-level and 
layout-level details of our implementation. Our design can 
handle variable rate codes of length up to 1024, and is 
implemented in a 0.1µm VLSI fabrication process. Our 
design has a die size of 12mm by 8mm and a power 
consumption of 7W. This implementation can extended to 
handle longer codes in a partially parallel manner, and 
allow for on-the-fly modification of the code. 

1. INTRODUCTION AND PREVIOUS WORK 
LDPC codes are known to achieve information rates very 
close to the Shannon limit when iteratively decoded [1]. 
Also, decoders for these codes have arithmetic 
computation requirements that are an order of magnitude 
less than Turbo decoders [2] for similar bit-error rate 
(BER) performance. Algorithms for decoding LDPC 
codes also have the advantage of being inherently parallel. 
In principle, this permits the use of multiple parallel 
processing elements to increase the throughput of the 
decoder. However, in practice, due to the high complexity 
of interconnects between processing units, exploiting this 
parallelism is a considerable challenge. One way to make 
the decoder more amenable to hardware implementation is 
by imposing a structure on the parity check matrix of the 
code. Examples of this approach are [3,7,12,13,18]. In [3] 
the authors present a decoder for a class of highly 
structured LDPC codes (known as ALDPC).  In [8], the 
authors reported a standard-cell based ASIC 
implementation of an LDPC decoder, with a throughput of 
1 Gbps. Similarly, in [7], a structured fully parallel custom 
VLSI implementation of an LDPC decoder was reported, 
with very high throughputs. The designs presented in [7] 
and [8] are of fixed code length and rate architectures. Our 
implementation, in contrast, allows completely general 
field configuration while simultaneously achieving 
throughputs that are higher than those of custom 
implementations such as [8]. In [19], a semi-parallel 
reconfigurable decoding approach is described, using 
FPGAs. The design implements a family of (3,6) codes 
using a special parity check matrix structure. The 
throughputs achieved are up to 127Mbps. 

Our implementation achieves approximately 2.4Gbps with 
code length of 1024; it can be scaled to handle longer 
codes. Further, the design allows switching between 
different codes on the fly, making the implementation 
useful in highly secure application scenarios. The impact 
of the presented chip is two-fold. Two obvious application 
areas that can immediately benefit from the presented 

decoder design are: (1) communication and storage 
devices where coding requirements may vary 
unpredictably, and upgradeability or maintainability may 
be costly or impossible, such as in deep-space 
communication or in soft radio applications; (2) a code-
development/analysis environment where an extensive 
and swift analysis of a variety of code configurations is 
indispensable. This device permits analysis of code 
performance in a real-time setting wherein a BER analysis 
at a high SNR is tractable. This device permits “configure 
and instrument” during run-time thereby eliminating the 
slow and expensive process of setting up the experiments 
for each configuration of decoder design and code data. 

This paper is organized as follows: Section 2 overviews 
LDPC code, Section 3 describes our approach, with 
implementation details, Section 4 provides simulation 
results, and Section 5 draws several concluding remarks 
and future work. 

2. BRIEF REVIEW OF LDPC CODES 
An LDPC code is a class of parity check codes which can 
be fully defined by parity–check matrix H. To be specific, 
it is defined as the null space of a very sparse MxN parity 
check matrix H. An LDPC code is represented by a 
bipartite graph, called a Tanner graph, in which one set of 
N bit or variable nodes corresponds to the set of 
codewords, while another set of M check nodes 
corresponds to the set of parity check constraints. Each 
edge corresponds to a non-zero entry in the parity check 
matrix H. 

LDPC decoding is performed using an iterative algorithm 
called belief-propagation (BP). The structure of BP 
decoding algorithm directly matches the Tanner graph, 
and in principle, enables us to make use of the parallelism 
that is native to LDPC codes. The following steps 
summarize the BP algorithm [5]: 
1. Initialize each variable node with the intrinsic (channel) 
information, and compute the variable-to-check messages. 
2. Pass the variable-to-check messages from variable nodes to 
check nodes along the edges of the Tanner graph. 
3. At each check node, generate the check-to-variable message 
using all incoming messages from the incident variable nodes. 
4. Pass the check-to-variable messages from check nodes to 
variable nodes along the edges of Tanner graph. 
5. At each variable node, update the estimate of the 
corresponding bit (using the incoming message and intrinsic 
information) and compute the outgoing variable to check 
message. 
6. Repeat steps 2-5 until either a valid codeword is obtained 
In this paper we restrict the discussion to regular LDPC 
codes. In regular LDPC codes the bit node and check node 
degrees are constants (denoted by j and k respectively). 
The rate of the code is an indicator of amount of 
redundancy that is added to the data.  For a regular (j, k) 
code it is expressed as R = (k-j)/k, or alternatively in terms 
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of dimensions of the H matrix as R = (c-r)/c, where, c is 
the number of columns and r is the number of rows in the 
H matrix.  

3. OUR APPROACH 
Our parallel implementation of the regular-code decoder 
accommodates selectable rates from the set {7/10, 6/9, 
5/8, 4/7, 3/6, 2/5, 1/4}. Our design is fully on-line 
programmable. We serialize the routing of messages 
between processing elements.  For example, in a rate ½ (3, 
6) code a bit node sends out three messages. Instead of 
sending three messages on three different buses we send 
them serially on a single bus. This reduces the size of the 
routing network and also the overall die size, allowing the 
design to be clocked at a higher speed. The hardware we 
have developed is similar in this sense to a FPGA 
implementation of an LDPC decoder, except that it is 
developed specifically for the task of LDPC decoding. 
This is unlike general FPGAs designed to implement 
arbitrary functionality. This is the reason for the higher 
throughputs achieved by our decoder.  
We have carried out the architectural, circuit-level and 
layout level implementation of our design, to obtain 
accurate area estimates of the final IC. Further, we have 
performed accurate 3-D parasitic capacitance (using 
SPACE-3D [15]) and resistance extraction. Then we used 
these in a SPICE [9] simulation model, using a 0.1µm 
fabrication process, to obtain accurate delay and power 
estimates of the circuit. 
The key objectives of our design were to develop: 
1. A message passing structure that is completely programmable 

within a useful range of rates.  
2. A reconfigurable message delivery path that permits a run-time 

rearrangement of the H-matrix.  
3. A placement of VN, CN and message-passing structures that 

minimizes the critical lengths and achieves high throughput.  
4. A floorplan that is scaleable to accommodate longer code 

lengths. 
5. A multiple-frame pipelining approach, where every stage 

including the message-passing cycle is balanced. The design is 
pipelined so that two frames are processed at the same time. 
When one frame transfers data from VNs to CNs, the other 
transfers date from CNs to VNs. The transfer delays are 
balanced.  

Our programmable LDPC decoder is organized with 
Check-node computation Units (CUs) arranged in a 
horizontal row, in the center of the IC die, as shown in 
Figure 1. Variable-node computation Units (VUs) are 
arranged in the center of the die as well, in a vertical 
column. This positioning of the CUs and VUs reduces the 
wire-lengths in the design by a factor of 2. Wire delays in 
a VLSI IC increase quadratically with wire length, hence 
this placement of CUs and VUs results in a delay-efficient 
design. As shown in Figure 1, the majority of the IC 
consists of Switch-box Units (SUs), which allow for the 
programmable connection of any VU to any CU (and vice 
versa). The transfer of messages from VUs to CUs occurs 
simultaneously with the transfer of messages from CUs to 
VUs, in our approach. In the rest of this paper, we assume 
that VUs drive their data horizontally, while CUs drive 
their data in a vertical direction. Assume that SUij is at the 

intersection of the horizontal wire from VUi and the 
vertical wire from CUj.  

 
Figure 1: Architecture of LDPC decoder IC 

Consider the simple Tanner graph shown in Figure 2. In 
this figure, the Variable Nodes (VNs) are shown to the 
left, while the Check Nodes (CNs) are on the right. In any 
iteration, VN1 needs to send data values a and d to the 
CNs it is connected to. Similarly, VN2 needs to send b 
and e, while VN3 needs to send c and f to the CNs. This 
transfer takes 6 cycles in total. The 6-bit string in each 
rectangle of Figure 3 describes the cycle in which these 
transfer operations are conducted. It indicates the cycle in 
which an SU (which would reside in the rectangle) 
connects its corresponding VU to its CU. For example, 
VN1 transfers data value a to CN1 in the first cycle, while 
d is transferred to CN2 in cycle 4. In the first 3 cycles, 
data values a, b and c are transferred to CN1, while in the 
next 3 cycles, values d, e and f are transferred to CN2.  

 
Figure 2: Sample Tanner Graph G 

Note that any 6-bit string has exactly one '1' value. Note 
also that any message from the VNs is static for 3 clock 
cycles while they are consumed by the CNs. 

For our implementation (in which the out-degree of  
check-nodes is at most 10, and the out-degree of variable-
nodes is 3), we need 30 such cycles for a transfer.  We 
implement a 5-bit counter in each SU, which is pre-loaded 
with the value of the cycle in which the SU is active (i.e. 
in which it connects its VU to its CU). When this down-
counter reaches a 0 count, the required connection is 
made. Note that the registers comprising the counter are 
all scan [20] enabled, allowing us to upload them with 
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arbitrary values in the field. This feature enables the field 
programmability of our design. 
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Figure 3: Message Transfer Timing for Graph G 

The data transfer from CUs to VUs occurs in parallel with 
the transfer of data from VUs to CUs. The circuit level 
diagram that describes the SU to CU transfer is shown in 
Figure 4. The data from VUs is first driven horizontally. 
Suppose the data from VUi needs to be selectively driven 
to CUj. If the output of SUij is '1' (SUij has down-counted 
to 0), then the data from VUi is driven to CUj. The circuit 
for this transfer is shown in Figure 4. In this figure, the 
SELECT signals represent the outputs of SUs. In any 
transfer, exactly one SELECT signal in any column j can 
be '1', ensuring that the data transferred to CUj 
corresponds to that driven by VUi, if the SELECT value of 
SUij is '1'. Breaking the vertical wire into 5 segments 
(using the 5 OR gates shown in Figure 4) reduces the 
maximum length of any vertical segment, significantly 
reducing data propagation delay. A similar circuit is used 
for transferring data from CUs to VUs (which occurs in 
parallel with data transfer from VUs to CUs).  

The layout level diagram of the SU is also shown in 
Figure 4. It consists of a 5-bit counter, and occupies an 
area of 10µm by 12.6µm. Using  these dimensions, we 
were able to determine the length of the longest wires in 
the vertical and horizontal directions, allowing us to 
model the delays in the design precisely. By modifying 
the SU such that the SELECT signal fires when the count 
reaches two or more distinct values, we can handle longer 
codes (and/or allow the ability to switch between different 
codes on-the-fly. 

The implementation of the CU and VU operations is 
performed in a pipelined fashion. VU operations are 
illustrated in Figure 5 (the CU operations are similar, with 
the exception that no channel information is used, and 
there is a stage of logtanh (logarctanh) computations 
before (after) the logic core, which are performed using 
Programmable Logic Arrays (PLAs) [17]. The speed 
requirements for these operations are minimal, since the 
critical delay path for our design is the transfer of data 
from CUs to VUs (and vice versa). We employ a simple 
pipelined add-accumulate operation in the VUs. For the 
VUs,  in the first cycle, we utilize channel information 
(signal C is a 1 in the first cycle). Finally, the self-
information is subtracted before date is stored in registers 
for subsequent transfer to CUs. 

SELECT1

SELECT2

SELECT3

SELECT4

To Check node

From VUs 1 − 4

From VUs 5 − 16

From VUs 17 − 64

From VUs 65 − 256

From VUs 257 − 512

       
Figure 4: Circuit Diagram and Layout for Switch Unit 
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Figure 5: Circuit Diagram of Variable-node Unit (VU) 

Using the dimensions of the switch core, we set out to 
estimate the worst case delay of the switching core. This 
was done by modeling the circuit from Figures 4 and 5, 
and augmenting this information with parasitic resistance 
and capacitance information obtained from SPACE-3D 
[15]. The devices in the circuit were assumed to be 
implemented in a 0.1µm fabrication process, and wire 
dimensions (thickness, ILD) for this process were used 
from [16]. We assigned metal layers 1 and 2 for local 
layout of the SU circuitry. To minimize the delay 
variation of the design due to cross-talk, we used metal 
layers 3 (horizontal) and 6 (vertical) for messages from 
VUs to CUs,  and metal layers 5 (horizontal) and 4 
(vertical) for messages from CUs to VUs. This 
arrangement ensures that layers which are switching are 
sufficiently far apart, minimizing their inter-layer cross-
coupling capacitance. The 3-D extracted capacitance 
values for our 0.1µm process are indicated in Table 1, for 
the wiring dimensions we utilized in our simulations. 

Layer i Ci,0 Ci,i Ci,i+1 

2 - - 32.80 

3 1.48 72.81 26.87 

4 1.39 72.43 30.13 

5 1.53 39.75 35.77 

6 7.09 48.67 - 

Table 1: 3-D Parasitic Capacitance Values (aF/µm). 
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4. EXPERIMENTAL RESULTS 
The clock period of the decoder is 60ps (worst case delay 
from VU to a SU) + 600ps (worst case delay from a SU to 
a CU). This includes the delay degradation due to  worst-
case cross-talk induced by neighbors of the switching 
wire. The propagation delay for signals driven from CUs 
to VUs is smaller, and therefore not critical. For a rate 1/2 
code of length 1024, the resulting decoding throughput is 
computed as 1024/T, where T is the decoding delay for a 
code word. In our implementation, T = 30 (cycles) x 
700ps (propagation delay) x 20 (iterations) x 2 x 0.5 (since 
VU-CU messages are transmitted simultaneously as CU-
VU messages) = about 420ns, which results in a decoding 
throughput of 2.44Gbps.  

The power consumption of our design consists of clock 
power (3W) and switching power (4W assuming 
simultaneous VU-CU and CU-VU transfers). Static power 
was found to be negligible. In comparison, the Flarion 
FPGA based decoder (which is also fully programmable) 
has a throughput of  100Mbps , computed for a parallelism 
factor of 128, rate of 0.5, code length of 1024, using 20 
decoding iterations, with the FPGA operating at 100MHz. 
These values were obtained from [14]. In [8], the ASIC 
solution yields a non-programmable code with a 
throughput of 1Gbps and power consumption of 0.7W. 
Our throughput is considerably higher, though our power 
consumption is also higher on account of the need to drive 
signals halfway across the die. 

The simulation in Figure 6 shows the longest path signal 
propagation delay for the OR tree logic of Figure 4. In this 
figure, the outputs of 2nd, 3rd and 4th level of the 
hierarchical OR tree are shown together with clock signal. 
Propagation delay of logic data ‘1’ and ‘0’ takes less than 
0.6ns, as indicated in the figure. 
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Figure 6: SPICE Plot Showing Propagation Delay 

5. CONCLUSIONS 
We have presented a fully programmable VLSI 
implementation of an LDPC decoder, using a 0.1µm 
fabrication process (12mm x 8mm IC). Circuit simulations 
indicate that our implementation achieves a decoding 
throughput of 2.4Gpbs with a power consumption of about 
7W, while allowing full programmability of the LDPC 
code. This is an order of magnitude higher than existing 
fully programmable FPGA implementations [14], and is 
about twice the throughput of a non-programmable ASIC 
solution [8]. In the future, we plan to use our approach to 
implement longer codes by modifying the switch units 
(SU). Additionally, we plan to utilize this approach to 

implement codes which can change on the fly, allowing 
for an added degree of security in highly sensitive data 
transfer applications. 
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