
A High-Speed Fully-Programmable VLSI Decoder for Regular LDPC Codes
Euncheol Kim, Nikhil Jayakumar, Pankaj Bhagwat, Anand Selvarathinam, Gwan Choi, Sunil P Khatri

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843

ABSTRACT
This paper presents a VLSI implementation of a Low-
Density Parity Check (LDPC) decoder that achieves 2.4
Gbps throughput yet permits real-time configuration of (1)
rate, (2) code length, and (3) the parity equations. This
decoder can be programmed in the field, much like an
FPGA. We describe the architectural, circuit-level and
layout-level details of our implementation. Our design can
handle variable rate codes of length up to 1024, and is
implemented in a 0.1µm VLSI fabrication process. Our
design has a die size of 12mm by 8mm and a power
consumption of 7W. This implementation can extended to
handle longer codes in a partially parallel manner, and
allow for on-the-fly modification of the code.

1. INTRODUCTION AND PREVIOUS WORK
LDPC codes are known to achieve information rates very
close to the Shannon limit when iteratively decoded [1].
Also, decoders for these codes have arithmetic
computation requirements that are an order of magnitude
less than Turbo decoders [2] for similar bit-error rate
(BER) performance. Algorithms for decoding LDPC
codes also have the advantage of being inherently parallel.
In principle, this permits the use of multiple parallel
processing elements to increase the throughput of the
decoder. However, in practice, due to the high complexity
of interconnects between processing units, exploiting this
parallelism is a considerable challenge. One way to make
the decoder more amenable to hardware implementation is
by imposing a structure on the parity check matrix of the
code. Examples of this approach are [3,7,12,13,18]. In [3]
the authors present a decoder for a class of highly
structured LDPC codes (known as ALDPC). In [8], the
authors reported a standard-cell based ASIC
implementation of an LDPC decoder, with a throughput of
1 Gbps. Similarly, in [7], a structured fully parallel custom
VLSI implementation of an LDPC decoder was reported,
with very high throughputs. The designs presented in [7]
and [8] are of fixed code length and rate architectures. Our
implementation, in contrast, allows completely general
field configuration while simultaneously achieving
throughputs that are higher than those of custom
implementations such as [8]. In [19], a semi-parallel
reconfigurable decoding approach is described, using
FPGAs. The design implements a family of (3,6) codes
using a special parity check matrix structure. The
throughputs achieved are up to 127Mbps.

Our implementation achieves approximately 2.4Gbps with
code length of 1024; it can be scaled to handle longer
codes. Further, the design allows switching between
different codes on the fly, making the implementation
useful in highly secure application scenarios. The impact
of the presented chip is two-fold. Two obvious application
areas that can immediately benefit from the presented

decoder design are: (1) communication and storage
devices where coding requirements may vary
unpredictably, and upgradeability or maintainability may
be costly or impossible, such as in deep-space
communication or in soft radio applications; (2) a code-
development/analysis environment where an extensive
and swift analysis of a variety of code configurations is
indispensable. This device permits analysis of code
performance in a real-time setting wherein a BER analysis
at a high SNR is tractable. This device permits “configure
and instrument” during run-time thereby eliminating the
slow and expensive process of setting up the experiments
for each configuration of decoder design and code data.

This paper is organized as follows: Section 2 overviews
LDPC code, Section 3 describes our approach, with
implementation details, Section 4 provides simulation
results, and Section 5 draws several concluding remarks
and future work.

2. BRIEF REVIEW OF LDPC CODES
An LDPC code is a class of parity check codes which can
be fully defined by parity–check matrix H. To be specific,
it is defined as the null space of a very sparse MxN parity
check matrix H. An LDPC code is represented by a
bipartite graph, called a Tanner graph, in which one set of
N bit or variable nodes corresponds to the set of
codewords, while another set of M check nodes
corresponds to the set of parity check constraints. Each
edge corresponds to a non-zero entry in the parity check
matrix H.

LDPC decoding is performed using an iterative algorithm
called belief-propagation (BP). The structure of BP
decoding algorithm directly matches the Tanner graph,
and in principle, enables us to make use of the parallelism
that is native to LDPC codes. The following steps
summarize the BP algorithm [5]:
1. Initialize each variable node with the intrinsic (channel)
information, and compute the variable-to-check messages.
2. Pass the variable-to-check messages from variable nodes to
check nodes along the edges of the Tanner graph.
3. At each check node, generate the check-to-variable message
using all incoming messages from the incident variable nodes.
4. Pass the check-to-variable messages from check nodes to
variable nodes along the edges of Tanner graph.
5. At each variable node, update the estimate of the
corresponding bit (using the incoming message and intrinsic
information) and compute the outgoing variable to check
message.
6. Repeat steps 2-5 until either a valid codeword is obtained
In this paper we restrict the discussion to regular LDPC
codes. In regular LDPC codes the bit node and check node
degrees are constants (denoted by j and k respectively).
The rate of the code is an indicator of amount of
redundancy that is added to the data. For a regular (j, k)
code it is expressed as R = (k-j)/k, or alternatively in terms

III ­ 9721­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

of dimensions of the H matrix as R = (c-r)/c, where, c is
the number of columns and r is the number of rows in the
H matrix.

3. OUR APPROACH
Our parallel implementation of the regular-code decoder
accommodates selectable rates from the set {7/10, 6/9,
5/8, 4/7, 3/6, 2/5, 1/4}. Our design is fully on-line
programmable. We serialize the routing of messages
between processing elements. For example, in a rate ½ (3,
6) code a bit node sends out three messages. Instead of
sending three messages on three different buses we send
them serially on a single bus. This reduces the size of the
routing network and also the overall die size, allowing the
design to be clocked at a higher speed. The hardware we
have developed is similar in this sense to a FPGA
implementation of an LDPC decoder, except that it is
developed specifically for the task of LDPC decoding.
This is unlike general FPGAs designed to implement
arbitrary functionality. This is the reason for the higher
throughputs achieved by our decoder.
We have carried out the architectural, circuit-level and
layout level implementation of our design, to obtain
accurate area estimates of the final IC. Further, we have
performed accurate 3-D parasitic capacitance (using
SPACE-3D [15]) and resistance extraction. Then we used
these in a SPICE [9] simulation model, using a 0.1µm
fabrication process, to obtain accurate delay and power
estimates of the circuit.
The key objectives of our design were to develop:
1. A message passing structure that is completely programmable

within a useful range of rates.
2. A reconfigurable message delivery path that permits a run-time

rearrangement of the H-matrix.
3. A placement of VN, CN and message-passing structures that

minimizes the critical lengths and achieves high throughput.
4. A floorplan that is scaleable to accommodate longer code

lengths.
5. A multiple-frame pipelining approach, where every stage

including the message-passing cycle is balanced. The design is
pipelined so that two frames are processed at the same time.
When one frame transfers data from VNs to CNs, the other
transfers date from CNs to VNs. The transfer delays are
balanced.

Our programmable LDPC decoder is organized with
Check-node computation Units (CUs) arranged in a
horizontal row, in the center of the IC die, as shown in
Figure 1. Variable-node computation Units (VUs) are
arranged in the center of the die as well, in a vertical
column. This positioning of the CUs and VUs reduces the
wire-lengths in the design by a factor of 2. Wire delays in
a VLSI IC increase quadratically with wire length, hence
this placement of CUs and VUs results in a delay-efficient
design. As shown in Figure 1, the majority of the IC
consists of Switch-box Units (SUs), which allow for the
programmable connection of any VU to any CU (and vice
versa). The transfer of messages from VUs to CUs occurs
simultaneously with the transfer of messages from CUs to
VUs, in our approach. In the rest of this paper, we assume
that VUs drive their data horizontally, while CUs drive
their data in a vertical direction. Assume that SUij is at the

intersection of the horizontal wire from VUi and the
vertical wire from CUj.

Figure 1: Architecture of LDPC decoder IC

Consider the simple Tanner graph shown in Figure 2. In
this figure, the Variable Nodes (VNs) are shown to the
left, while the Check Nodes (CNs) are on the right. In any
iteration, VN1 needs to send data values a and d to the
CNs it is connected to. Similarly, VN2 needs to send b
and e, while VN3 needs to send c and f to the CNs. This
transfer takes 6 cycles in total. The 6-bit string in each
rectangle of Figure 3 describes the cycle in which these
transfer operations are conducted. It indicates the cycle in
which an SU (which would reside in the rectangle)
connects its corresponding VU to its CU. For example,
VN1 transfers data value a to CN1 in the first cycle, while
d is transferred to CN2 in cycle 4. In the first 3 cycles,
data values a, b and c are transferred to CN1, while in the
next 3 cycles, values d, e and f are transferred to CN2.

Figure 2: Sample Tanner Graph G

Note that any 6-bit string has exactly one '1' value. Note
also that any message from the VNs is static for 3 clock
cycles while they are consumed by the CNs.

For our implementation (in which the out-degree of
check-nodes is at most 10, and the out-degree of variable-
nodes is 3), we need 30 such cycles for a transfer. We
implement a 5-bit counter in each SU, which is pre-loaded
with the value of the cycle in which the SU is active (i.e.
in which it connects its VU to its CU). When this down-
counter reaches a 0 count, the required connection is
made. Note that the registers comprising the counter are
all scan [20] enabled, allowing us to upload them with

III ­ 973

arbitrary values in the field. This feature enables the field
programmability of our design.

d a

VN1

e b

VN2

cf

VN3

0 0 0 0 01

0 0 0 00 1

0 0 0 00 10 0 0 00 1

0 0 0 00 1

0 0 0 10 0

CN2CN1

Figure 3: Message Transfer Timing for Graph G

The data transfer from CUs to VUs occurs in parallel with
the transfer of data from VUs to CUs. The circuit level
diagram that describes the SU to CU transfer is shown in
Figure 4. The data from VUs is first driven horizontally.
Suppose the data from VUi needs to be selectively driven
to CUj. If the output of SUij is '1' (SUij has down-counted
to 0), then the data from VUi is driven to CUj. The circuit
for this transfer is shown in Figure 4. In this figure, the
SELECT signals represent the outputs of SUs. In any
transfer, exactly one SELECT signal in any column j can
be '1', ensuring that the data transferred to CUj
corresponds to that driven by VUi, if the SELECT value of
SUij is '1'. Breaking the vertical wire into 5 segments
(using the 5 OR gates shown in Figure 4) reduces the
maximum length of any vertical segment, significantly
reducing data propagation delay. A similar circuit is used
for transferring data from CUs to VUs (which occurs in
parallel with data transfer from VUs to CUs).

The layout level diagram of the SU is also shown in
Figure 4. It consists of a 5-bit counter, and occupies an
area of 10µm by 12.6µm. Using these dimensions, we
were able to determine the length of the longest wires in
the vertical and horizontal directions, allowing us to
model the delays in the design precisely. By modifying
the SU such that the SELECT signal fires when the count
reaches two or more distinct values, we can handle longer
codes (and/or allow the ability to switch between different
codes on-the-fly.

The implementation of the CU and VU operations is
performed in a pipelined fashion. VU operations are
illustrated in Figure 5 (the CU operations are similar, with
the exception that no channel information is used, and
there is a stage of logtanh (logarctanh) computations
before (after) the logic core, which are performed using
Programmable Logic Arrays (PLAs) [17]. The speed
requirements for these operations are minimal, since the
critical delay path for our design is the transfer of data
from CUs to VUs (and vice versa). We employ a simple
pipelined add-accumulate operation in the VUs. For the
VUs, in the first cycle, we utilize channel information
(signal C is a 1 in the first cycle). Finally, the self-
information is subtracted before date is stored in registers
for subsequent transfer to CUs.

SELECT1

SELECT2

SELECT3

SELECT4

To Check node

From VUs 1 − 4

From VUs 5 − 16

From VUs 17 − 64

From VUs 65 − 256

From VUs 257 − 512

Figure 4: Circuit Diagram and Layout for Switch Unit

C

From CUs

Accumulator

Information
Channel

To CUs

Subtractor
Bank

Register

4

4

Figure 5: Circuit Diagram of Variable-node Unit (VU)

Using the dimensions of the switch core, we set out to
estimate the worst case delay of the switching core. This
was done by modeling the circuit from Figures 4 and 5,
and augmenting this information with parasitic resistance
and capacitance information obtained from SPACE-3D
[15]. The devices in the circuit were assumed to be
implemented in a 0.1µm fabrication process, and wire
dimensions (thickness, ILD) for this process were used
from [16]. We assigned metal layers 1 and 2 for local
layout of the SU circuitry. To minimize the delay
variation of the design due to cross-talk, we used metal
layers 3 (horizontal) and 6 (vertical) for messages from
VUs to CUs, and metal layers 5 (horizontal) and 4
(vertical) for messages from CUs to VUs. This
arrangement ensures that layers which are switching are
sufficiently far apart, minimizing their inter-layer cross-
coupling capacitance. The 3-D extracted capacitance
values for our 0.1µm process are indicated in Table 1, for
the wiring dimensions we utilized in our simulations.

Layer i Ci,0 Ci,i Ci,i+1

2 - - 32.80

3 1.48 72.81 26.87

4 1.39 72.43 30.13

5 1.53 39.75 35.77

6 7.09 48.67 -

Table 1: 3-D Parasitic Capacitance Values (aF/µm).

III ­ 974

4. EXPERIMENTAL RESULTS
The clock period of the decoder is 60ps (worst case delay
from VU to a SU) + 600ps (worst case delay from a SU to
a CU). This includes the delay degradation due to worst-
case cross-talk induced by neighbors of the switching
wire. The propagation delay for signals driven from CUs
to VUs is smaller, and therefore not critical. For a rate 1/2
code of length 1024, the resulting decoding throughput is
computed as 1024/T, where T is the decoding delay for a
code word. In our implementation, T = 30 (cycles) x
700ps (propagation delay) x 20 (iterations) x 2 x 0.5 (since
VU-CU messages are transmitted simultaneously as CU-
VU messages) = about 420ns, which results in a decoding
throughput of 2.44Gbps.

The power consumption of our design consists of clock
power (3W) and switching power (4W assuming
simultaneous VU-CU and CU-VU transfers). Static power
was found to be negligible. In comparison, the Flarion
FPGA based decoder (which is also fully programmable)
has a throughput of 100Mbps , computed for a parallelism
factor of 128, rate of 0.5, code length of 1024, using 20
decoding iterations, with the FPGA operating at 100MHz.
These values were obtained from [14]. In [8], the ASIC
solution yields a non-programmable code with a
throughput of 1Gbps and power consumption of 0.7W.
Our throughput is considerably higher, though our power
consumption is also higher on account of the need to drive
signals halfway across the die.

The simulation in Figure 6 shows the longest path signal
propagation delay for the OR tree logic of Figure 4. In this
figure, the outputs of 2nd, 3rd and 4th level of the
hierarchical OR tree are shown together with clock signal.
Propagation delay of logic data ‘1’ and ‘0’ takes less than
0.6ns, as indicated in the figure.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Time (ns)

No
de
 v
ol
ta
ge
 (
v)

Clock

L2out

L3out

L4out0.60ns 0.57ns

Figure 6: SPICE Plot Showing Propagation Delay

5. CONCLUSIONS
We have presented a fully programmable VLSI
implementation of an LDPC decoder, using a 0.1µm
fabrication process (12mm x 8mm IC). Circuit simulations
indicate that our implementation achieves a decoding
throughput of 2.4Gpbs with a power consumption of about
7W, while allowing full programmability of the LDPC
code. This is an order of magnitude higher than existing
fully programmable FPGA implementations [14], and is
about twice the throughput of a non-programmable ASIC
solution [8]. In the future, we plan to use our approach to
implement longer codes by modifying the switch units
(SU). Additionally, we plan to utilize this approach to

implement codes which can change on the fly, allowing
for an added degree of security in highly sensitive data
transfer applications.

6. REFERENCES
[1] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” IEE Electronics Letters, vol.33, no.6,
pp.457-458, Mar. 1997.
[2] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, "VLSI
architectures for iterative decoders in magnetic recording channels,"
IEEE Trans. Magnetics, vol.37, no.2, pp. 748-755, Mar. 2001.
[3] Pankaj Bhagawat, Momin Uppal, and Gwan Choi, “FPGA Based
Implementation of Decoder for Array Low-Density Parity-Check
Codes”, IEEE J. Solid-State Circuits, Vol.37, 2002, pp. 404-412.
[4] T. Bhatt, K. Narayanan, and N. Kehtarnavaz, “Fixed point DSP
implementation of low-density parity check codes,” in Proc. Ninth DSP
Workshop, Hunt, Texas, October 2000.
[5] T. Zhang and K. K. Parhi, “An FPGA Implementation of (3,6)-
Regular Low-Density Parity-Check Code Decoder”, EURASIP Journal
on Applied Signal Processing, special issue on Rapid Prototyping of
DSP Systems, May 2003 vol. 2003, no. 6, pp. 530-542.
[5] E. Eleftheriou and S. Olcer, “Low density parity-check codes for
digital subscriber lines”, Proc. ICC’2002, New York, pp.1752-
1757(2002).
[6] A. Selvarathinam, G. Choi, A. Prabhakar, K. Narayanan, and E. Kim,
“A massively scaleable decoder architecture for low-density parity-check
codes”, Proceedings of International Symposium on Circuits and
Systems, May 2003, vol.2, pp.61-64
[7] V. Nagarajan, N. Jayakumar, S. Khatri and O. Milenkovic, "High-
Throughput VLSI Implementations of Iterative Decoders and Related
Code Construction Problems", Proceeding, IEEE Global
Telecommunications Conference (GLOBECOM), October 2004, vol. 1,
pp 361-365.
 [8] A.J.Blanksby and C.J.Howland, “A 690-mW 1024-b, Rate ½ Low-
Density Parity-Check Code Decoder,” IEEE Journal of solid-state
circuits, vol.37, No.3, Mar 2002
[9] L. Nagel, “Spice: A computer program to simulate computer
circuits,” in University of California, Berkeley
UCB/ERL Memo M520, May 1995.
[10] J.M.Rabaey, “Digital Integrated Circuits: A design Perspective,”
Prentice Hall Electronics and VLSI series
[11] “The Berkeley Predictive Technology Model.” http://www-
device.eecs.berkeley.edu/_ptm/.
[12] T.Zhang and K.Parhi, “Join-(3,k)-Regular LDPC Code and
Decoder/Encoder Design,” submitted to IEEE Trans. On Signal
Processing
[13] H. Zhong, and T. Zhang, “Design of VLSI Implementation-Oriented
LDPC Codes,” preprint.
[14] Flarion Technology, Vector-LDPC Coding Solution Data Sheet.
http://www.flarion.com/products/vector.asp
[15] SPACE Layout to Circuit Extractor, Delft University of
Technology, http://www.space.tudelft.nl
[16] S. Khatri, A. Mehrotra, R. Brayton, A, Sangiovanni-Vincentelli, R.
Otten, "A Novel VLSI Layout Fabric for Deep Sub-micron
Applications", Proceedings, Design Automation Conference, June 1999,
pp. 491-496.
 [17] S. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli, “Cross-talk
immune VLSI design using a network of PLAs embedded in a regular
layout fabric,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, (Santa Clara, CA), pp. 412–418,
Nov 2000.
[18] M. Mohiyuddin, A. Prakash, A. Aziz, W. Wolf, “Synthesizing
Interconnect Efficient Low Density Parity Check Codes, DAC 2004,
June 7–11, 2004, San Diego, California, USA.
[19] M. Karkooti and J. Cavallaro, “Semi-parallel Reconfigurable
Architectures for Real-time LDPC Decoding,” Proc. IEEE International
Conference on Information Technology (ITCC), pp. 579-585, Volume 1,
Las Vegas, NV April 2004

III ­ 975

