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Abstract—It is well known that the use of canonical 

signed-digit (CSD) multiplier coefficients in combination 
with sub-expression sharing and elimination leads to a 
substantial reduction in the hardware complexity of FIR 
digital filters. This paper presents a genetic algorithm for 
the design and optimization of frequency-response 
masking (FRM) FIR digital filters over the CSD 
multiplier coefficient space. This is based on designing a 
corresponding infinite-precision-coefficient digital filter 
seed (through a conventional continuous optimization), 
and on quantizing the resulting multiplier coefficients 
into CSD coefficients via a look-up table. The resulting 
digital filter is subsequently encoded into a chromosome 
which is perturbed to form an initial population for the 
genetic algorithm. The salient feature of the resulting 
genetic algorithm is that it automatically leads to 
legitimate CSD-coefficient offspring digital filters after 
the operations of crossover and mutation, i.e. without any 
recourse to gene repair. Application to the design of a 
bandpass FIR digital filter produces a CSD-coefficients 
digital filter with very close performance to that obtained 
by the corresponding continuous infinite-precision 
optimization.  

1. INTRODUCTION 

The hardware implementation of higher-order FIR digital 
filters exhibiting sharp transition bands usually requires large 
chip area and involves high power consumption.  Several 
techniques are available for reducing the hardware 
implementation complexity of FIR digital filters, e.g. through 
the use of the frequency-response masking (FRM) technique 
in combination with signed power-of-two (SPT) multiplier 
coefficients [1], [2]. FRM digital filters use lower order 
subfilters arranged in such a manner as to produce very sharp 
transition bands as are the characteristic of higher order 
digital filters, while keeping the multiplier coefficients very 
sparse so as to minimize the number of multipliers and 
adders. The use of SPT multiplier coefficients reduces the 
hardware implementation complexity by replacing the 
corresponding multiplications by series of shift and add 
operations.  By using a subset of SPT multiplier coefficient 

representation called the canonical signed-digit (CSD) 
coefficient representation, further reduction in the hardware 
complexity can be achieved through sub-expression sharing 
or elimination [3], [4]. 

This paper presents a genetic algorithm for the design 
and optimization of FRM bandpass FIR digital filters 
incorporating CSD multiplier coefficients. A similar 
technique based on SPT multiplier coefficients was 
developed in [5] and was applied to the optimization of 
lowpass FIR digital filters.  

2. FREQUENCY RESPONSE MASKING 
TECHNIQUE 

Let us consider a linear-phase lowpass FIR digital filter 
characterized by a transfer function Hb(z) of order M, and a 
corresponding magnitude frequency response |Hb(e

j )| as 

shown in Fig. 1a, where z (ω, respectively) represents the 
discrete-time complex (real, respectively) frequency-

variable. The transition bandwidth of Hb(z) is ∆=ωs - ωp.
Moreover, let us consider a digital filter characterized by a 
transfer function Hc(z) which is complementary to the 
transfer function Hb(z) in accordance with 
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By interpolating the digital filters Hb(z) and Hc(z) by a 
factor L, the magnitude frequency responses of the 
interpolated digital filters, having transfer functions Hb(z

L)
and Hc(z

L), respectively, are obtained as shown in Figs. 1b 
and 1d. Consequently, by using a pair of masking digital 
filters HMb(z) and HMc(z), one can suppress the unwanted 
image bands of the interpolated filters Hb(z

L) and Hc(z
L) (c.f. 

Figs. 1b and 1d). This gives rise to the magnitude frequency 
responses Hb(z

L)HMb(z) and Hc(z
L)HMc(z) associated with the 

masked digital filters, as shown in Figs. 1c and 1e, 
respectively.   
     The desired digital filter will be obtained by adding two 
masked filters as shown in Fig. 2, having a transfer function 
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with a narrow transition bandwidth of ∆/L, and with a
magnitude frequency response as shown in Fig. 1e.  

Fig. 1. Illustration of frequency response masking technique 

Fig. 2. Block diagram of the FRM FIR digital filter 

3. GENETIC ALGORITHMS

Genetic algorithms simulate a natural evolution process 
for the purpose of finding the optimal solution to a 
potentially complex problem.  They are based on three main 
operations, namely, selection, crossover, and mutation.   

Genetic algorithms begin with a collection of potential 
solutions called the population pool.  Often, a single seed 
solution is obtained and encoded as a binary string called a 
chromosome, which is then randomly perturbed to generate 
the initial population pool.  In the case of digital filters, 
digital representations of the constituent multiplier 
coefficients are concatenated to form a chromosome. In the 
course of genetic optimization, a certain number of 
chromosomes in the population pool are randomly selected 
to join the mating pool. In the mating pool, the chromosomes 
will pair up at random via parent selection to produce 
offspring chromosomes by crossover. However, to simulate 
the natural evolution process more accurately, it is required 
to ensure that better solutions have higher probabilities of 
having their offspring enter into the population pool in the 
next generation.  In this way, the fitness of a chromosome is 
used as a factor in parent selection within the mating pool.  

The crossover operation randomly interchanging the bits 
of two parent chromosomes to be released into the 
subsequent population pool.  Mutation operation encourages 
population diversity by randomly flipping certain bits in a 
chromosome before including the chromosome to the 
subsequent population pool.  The genetic operations are 
repeated until a pre-specified stopping criterion is reached. 

4. DESIGN TECHNIQUE

A) Chromosome Encoding: The encoding of an optimization 
problem into a chromosome suitable for genetic algorithms 
can prove to be a difficult problem. In digital filter design, 
usually the digital representation of the constituent multiplier 
coefficients or the constituent poles and zeros are 
concatenated in the form of a chromosome [6-8].  This 
method may become computationally inefficient if the 
multiplier coefficients are represented as CSD numbers, 
mainly due to the fact that careful consideration much be 
given to ensure that the underlying genetic operations lead to 
CSD offspring multiplier coefficients only.  

In this paper, a look-up table similar to that shown in [5] 
is used to ensure that the resulting multiplier coefficients 
remain as CSD numbers by the underlying genetic algorithm 
operations.  The proposed look-up table comprises five 
columns, including columns for table entry values, CSD 
multiplier coefficient values, CSD multiplier coefficient sign 
bits, the decimal equivalents of the CSD multiplier 
coefficient values, and the wordlengths of the CSD 
multiplier coefficients.   

In order to properly produce a look-up table, certain 
practical restrictions must be taken into account. For 
example, if each table entry value is to be genetically 
encoded into a 12-bit CSD number, then 4096 table entries 
are required to ensure that the underlying genetic operations 
lead to legitimate CSD numbers. The range of the decimal 
equivalents of the CSD numbers must also be taken into 
account, which is directly related to the number of nonzero 
CSD digits and their respective exponents.  For the purposes 
of this paper, a table of size 4096 provides an adequate set of 
multiplier coefficient values.  In this way, a maximum of 
three non-zero CSD digits were allocated to a range from 2-13

to 23, to generate an exhaustive look-up table.  In order to 
keep the table size limited to 4096, the smallest values were 
removed from the table, with the remaining values being in 
the range  ±9.125 to ±0.000366. 

Using the above look-up table, the multiplier coefficients 
of an infinite precision FRM seed FIR digital filter are 
quantized to their nearest CSD counterparts in the table, the 
table entry values are encoded into binary numbers, and 
these binary numbers are concatenated to form a 
chromosome.  Note that due to the linear phase property, 
only the first half of the multiplier coefficients need to be 
encoded.  

B) Genetic Operations: Once a seed digital filter is encoded 
into a chromosome, a population pool is generated by 
randomly flipping the bits in the seed chromosome in 
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accordance with the probability 
1

0.8 (1/ 2)
b i+ −⋅ , where b is 

the number of bits representing each multiplier coefficient, 
and i is the current bit location within the coefficient.  In this 
way, the LSB of each coefficient has a high probability of 
flipping, while its MSB has a low probability of flipping.  
This encourages a population pool that is sufficiently 
diverse, and yet reasonable in terms of acceptability of 
solutions. 

The proposed genetic algorithm is based on a population 
pool of N=500 chromosomes.  The fitness function used is a 
slightly modified version of that in [5]: 
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where H(ej ) is the frequency response of the digital filter, 
where k is the desired passband to stopband ratio, and where 
 is a constant to ensure all fitness functions remain positive 

(typically  is 30 or 40 and k=1). In this way, each member 
of the population is assigned a fitness level and ranked with 
respect to the rest of the population. 

A mating pool of 150 chromosomes is generated by 
searching the population pool and by randomly selecting 
chromosomes, with preference given to chromosomes with 
better fittnes.  The probability of selection is given by the 

exponential function 
1

( ) ,
x x

p x k Z
−= ⋅  where 

( ) 1

( 1 )

0.01

N NZk
−= , where Z is the probability of selection of the 

fittest chromosome (here Z=0.8), and where x is the fitness 
rank of the particular chromosome.  Since natural systems 
tend to evolve slowly before a rapid jump in the overall 
fitness level of the population occurs, a pre-determined 
number of non-elite (low fitness) chromosomes are released 
into the mating pool to encourage mating diversity.  In this 
case, the population pool is searched by using the given 
probability function until 110 chromosomes are selected.  In 
the event that the entire population pool has been searched 
and the sought after 110 chromosomes have not yet been 
found, the search is renewed within a population pool where 
the previously selected chromosomes have been removed.  
The remaining 40 slots in the mating pool are selected from 
the lower ranks of the population pool. 

Parent selection is performed within the mating pool 
using roulette-wheel selection, which encourages 
chromosomes with a high fitness factor to produce more 
offsprings.  This is executed by summing the entire mating 
pool fitness factors, by choosing a random point between 
zero and the sum, and by selecting a parent where the sum of 
all the preceding fitness factors is greater than or equal to the 

random number.  In this way, 230 pairs of parents are 
selected to produce 460 offsprings.  The offsprings are 
produced by two-point crossover, where two random points 
within the length of a chromosome are selected and the bits 
of the chromosomes between these two points are 
interchanged.  The remaining 40 slots of the population pool 
are filled by 40 non-elite chromosomes from the previous 
generation population pool in order to encourage additional 
diversity. 

     (a) 

 (b) 

(c) 

Fig. 3.  FRM FIR digital filter magnitude frequency 
responses 
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Fig. 4. Fitness Evolution 

Finally, mutation is performed on the entire population 
pool to encourage even more diversity, and to eliminate 
convergence to a potentially poor solution.  This is 
performed in a similar fashion to the technique used to 
generate the initial population pool, except that the above 
probability is multiplied by 0.08 instead of 0.8 in order to 
limit the most possible radical changes.  The newly mutated 
population pool can now be transferred to the next 
generation and the genetic algorithm can begin another 
iteration until a stopping criterion is reached. In this paper, a 
certain number of iterations has been used (typically between 
1000 and 5000). 

4. DESIGN EXAMPLE

By using a Matlab least squares optimization, a seed 
bandpass FRM FIR digital filter consisting of infinite-
precision multiplier coefficients was designed satisfying the 

following specifications: 
1

0.31 ,
s

ω π=
1

0.3 ,
p

ω π=

2
0.7 ,

p
ω π= and 

2
0.71

s
ω π= .  From [1] and by using other 

considerations, M=68, L=8, and Nmb=33, Nmc=61 for a 
desired stopband attenuation of 50dB, where Nmb and Nmc are 
the orders of HMb(z) and HMc(z), respectively. The resulting 
magnitude frequency response is shown in Fig. 3a, having a 
stopband attenuation of 49.2dB and a passband ripple of 
0.033dB.  Truncating the infinite-precision multiplier 
coefficients into three nonzero-digit CSD coefficients results 
in the magnitude response in Fig. 3b, having a stopband 
attenuation of 38.9dB and a passband ripple of  0.058dB.  

The magnitude response obtained from the genetic 
algorithm after 1000 generations is shown in Fig. 3c, having 
a stopband attenuation 46.5dB and a passband ripple of 
0.048dB. Finally, Fig. 4 shows the fitness evolution of the 
best chromosome in the population (top curve) and the 
average of the top 50% of the population (lower curve). 

5. CONCLUSION

This paper has presented a genetic algorithm for the design 
of FRM FIR digital filters over the CSD multiplier 
coefficients space.  This had been based on designing an 
infinite-precision coefficient seed digital filter through 
continuous optimization, and on quantizing the resulting 
multiplier coefficients into three nonzero-digit CSD 

coefficients via a look-up table. The resulting digital filter is 
encoded into a chromosome suitable for use in a genetic 
algorithm.  The salient feature of the proposed genetic 
algorithm is that it automatically leads to legitimate offspring 
digital filters after the operations of crossover and mutation 
without any recourse to gene repair.  Application to the 
design of a bandpass FRM FIR digital filter has produced a 
CSD-coefficient digital filter with very close performance to 
the corresponding infinite-precision digital filter obtained by 
continuous optimization. The proposed genetic algorithm can 
be generalized [9] to other types of FIR digital filters as well 
as to other types of multiplier coefficient spaces [10-13]. 
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