
ANALYSIS AND ARCHITECTURE DESIGN FOR MEMORY EFFICIENT PARALLEL

EMBEDDED BLOCK CODING ARCHITECTURE IN JPEG 2000

Lien-Fei Chen, Tai-Lun Huang, Tzau-Min Chou, and Yeong-Kang Lai

Department of Electrical Engineering

National Chung Hsing University, Taichung, Taiwan, R.O.C

ABSTRACT

In this paper, a memory efficient parallel Embedded Block Coding

(EBC) architecture with throughput enhancement in JPEG 2000

applications is proposed. In order to reduce the memory size, the

memory-free algorithm for state variables in the context formation

(CF) is proposed. The proposed algorithm eliminates the state vari-

able memories by calculating three coding state variables (p+1[n],

p+1[n], and p[n]) on the fly. We also propose the stripe-column-

based pass-parallel operation to perform three coding passes and

four samples within the stripe-column concurrently. The FIFO

architecture between the high throughput CF and the arithmetic

encoder (AE) is also optimized by the pipelined sorter and the

parallel-in parallel-out register file. Owing to the proposed high

parallel CF, we propose a parallel and two-stage pipelined AE

architecture to deal well with the context/decision (CX/D) pairs for

three coding passes. The experimental results show that memory

size of the proposed architecture is smaller than other familiar

architectures, and the proposed architecture can process the loss-

less coding about 50MSamples/sec at 100-MHz.

1. INTRODUCTION

JPEG 2000 is an emerging standard for still image coding devel-

oped by ISO/IEC JTC1/SC29/WGI [1]. There are high expecta-

tions for the use of JPEG 2000 in consumer electronic systems

because of its superior features such as lower tile boundary artifact

and higher compression efficiency. The key components of the

JPEG 2000 system are discrete wavelet transform (DWT) and the

entropy coding for the code-block data using the embedded block

coding with optimized truncation (EBCOT) algorithm. The

EBCOT algorithm contains two parts: tier-1 and tier-2. It is used to

encode the code-block via a context-based binary arithmetic coder

in tier-1, and the tier-2 is used for the rate-distortion (R-D) optimi-

zation and the bit-stream of the JPEG2000 format. In the light of

the analysis of the computational complexity for JPEG 2000, the

EBC architecture (EBCOT tier-1) is the bottleneck in the JPEG

2000 system [3].

According to the literature [2]-[6], the speed-up methods and the

memory requirement of the state variables are the design chal-

lenges for the high performance and cost effective CF architecture

in EBC. An efficient CF architecture is proposed in [2] to reduce

the number of memory accesses. In the literature [3], the sample

skipping (SS) and group-of-column skipping (GOCS) techniques

are utilized to rapidly detect whether the samples in the code-block

have already been coded to reduce the processing time. In addition

to speed-up via the SS and GOCS methods, the pass-parallel con-

text modeling (PPCM) in [5] is an alternative speed-up approach

to perform three coding passes in parallel. The architecture [6]

proposed a parallel EBC algorithm and performed all bit-planes in

parallel and only used 64 12-bit memory to keep the data-reuse

requirement.

In the architecture [2]-[6], many speed-up methods are proposed

to increase the throughput. However, a huge amount of the state

variable memory requirements is still a bottleneck to reduce the

hardware cost, and what’s more, the memory saving mechanism to

reduce the total memory size is only discussed in architecture [4]

and [6]. In the literature [4], the memory saving algorithm is pro-

posed to save the magnitude refinement state variable memory (4K

bits) on the strength of the SS and GOCS methods. The architec-

ture [6] presented a parallel EBC algorithm to achieve the memory

efficient requirement.

In this paper, we propose a memory efficient and high through-

put parallel EBC architecture via the memory-free algorithm and

the stripe-column-based pass-parallel operation in the CF architec-

ture. However, owing to the proposed parallel CF architecture, the

parallel-in parallel-out FIFO architecture and the high throughput

AE are also proposed in our parallel EBC architecture.

2. PROPOSED EBC ARCHITECTURE

A. Memory-Free Algorithm for Bit-Plane Coder

The EBCOT tier-1 algorithm consists of two major units: the bit-

plane coder and the arithmetic coder (AE). The bit-plane coder,

which is also called the context formation (CF), is the first stage in

the EBCOT tier-1 algorithm. The quantized subband data is parti-

tion into many square blocks, which are called the code blocks.

The bit-plane coder encodes each bit-plane of the code block by

performing three coding passes and produces the context/decision

(CX/D) pairs.

Table I shows the traditional memory requirement for a code-

block to perform the three coding passes in the bit-plane coder.

This table shows that the memory modules of two bit-plane data

and three coding state variables are required during a code-block

coding. For example, the quantized transform coefficients have the

TABLE I

THE MEMORY REQUIREMENT FOR CODE-BLOCK CODING ALGORITHM

Category Name Description

p[n] The p-th magnitude bit-plane
Bit-plane Data

[n] The sign bit-plane

p[n] The new significance state of the bit-plane p

p[n]
The new magnitude refinement (MR) state of

the bit-plane p

Coding State

Variable

p[n] The visited state of the bit-plane p

III ­ 9641­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

m-bit precision (MSB ~ LSB: m-1 ~ 0) and the current bit-plane p

will be coded. The significance state variable p+1[n], which is

updated during coding the previous bit-plane p 1, must be used

to perform the three coding passes in the current bit-plane p. In

addition, the magnitude refinement (MR) state variable p+1[n] is

necessary to perform the pass 2 coding in the current bit-plane p.

According to the proposed memory-free algorithm [9], the state

variable memories can be eliminated and the state variables (p+1[n]

and p+1[n]) can be calculated on the fly using the OR operation of

the bit-plane sample data.

B. State Variable Schedule Unit (SSU)

Fig. 1 shows the block diagram of the proposed memory efficient

parallel EBC architecture. After DWT, the subband data stored in

the code-block memory are fed into the data register. For the case

of the m-bit nonzero coefficients, the bit-plane p will be executed

in the context window logic to perform three coding passes. Owing

to the stripe-column-based pass-parallel operation, the four sam-

ples within the stripe-column will be coded in parallel. The four

coefficients within the stripe-column are stored in 4 (m 1)-bit

data register consequentially.

The sign bit-plane data ([n]) and the p-th magnitude bit-plane

values (p[n]) can be fetched from the data register directly. Be-

cause of the stripe-column-based pass-parallel operations, the vis-

ited state variable (p[n]) is not taken into account in the proposed

architecture. Therefore, we only consider significance state vari-

able (p+1[n]) and MR state variable (p+1[n]). In the light of the

literature [9], the SSU is devised to calculate the state variables

(p+1[n] and p+1[n]) on the fly using the proposed memory-free

algorithm. The detail architecture of the SSU circuit is shown in

Fig. 2. There are four SSU circuits to calculate the corresponding

state variables of the samples within a stripe-column in the pro-

posed EBC architecture. In the Fig. 2, we can also use the binary

tree and inverse binary tree OR-gates architecture instead of the

ripple OR-gates to reduce the critical path of the SSU circuit.

C. Stripe-Column-Based Pass-Parallel Operation

In order to strengthen the throughput of the bit-plane coder, we

present a fully pipelined architecture, which processes a complete

stripe-column concurrently and pass-parallel operation in the con-

text formation (CF). We proposed a pass prediction mechanism to

perform the stripe-column-based pass-parallel operation. The pro-

posed stripe-column-based pass-parallel operation and the archi-

tecture of the pass prediction are also shown in the literature [9].

Fig. 2. Detail architecture of the State Variable Schedule Unit (SSU)

circuit.

Context

Modeling

ZC SC

MR RLC

Sign

Context Window

Logic

Compressed

code

State Variable

Schedule Unit

(SSU)

DWT

Coefficient

2-symbols

AE

D

CX

pass

FIFO

2-symbols

AE

2-symbols

AE

m-1

p + 1

p

0

p - 1

Fig. 1. Block diagram of the proposed Embedded Block Coding (EBC) architecture.

(a)

H
i

H
i

significance state variable

magnitude bit-plane data

new significance state variable

after pass 1 coding

new significance state variable

after pass 3 coding

(b)

Fig. 3. (a) The shift register banks of the significance state data () and

magnitude bit-plane data (). (b) The detail architecture of the new signifi-

cance state data () for pass 1 and pass3 in (a).

III ­ 965

For the context window logic, in order to perform three coding

passes in pipeline, we should use three shift register banks to im-

plement the context window logic. There are three data must be

utilized in the three shift register banks and these three data are the

sign bit (), the magnitude bit-plane data (), and the significance

state variables (). The detail architecture of the shift register bank

is shown in Fig. 3. The rectangle in the figure stands for the con-

text window. In Fig. 3, two 64-bit row buffers are devised to store

the significance state data () for pass 1 and pass 3 respectively.

The pick circles and the purple circles in Fig. 3 (a) represent the

significance within the row buffer for pass 1 and pass 3 respec-

tively. These two data will be exploited to perform three coding

passes in the next stripe. Furthermore, the significance predictor is

also intended to anticipate the correct significance state () for pass

1 and pass 3 as a result of the dependence of the significance state

for the four samples within the stripe-column. In Fig. 3(a), the

green circles and the black circles represent the significance state

variables and the magnitude bit-plane data, which are fetched from

the SSU circuit respectively. The red circles and the blue circles

stand for the new significance state after the coding of the pass 1

and pass 3 respectively. The detail architecture of the significance

predictor for pass 1 and pass 3 is also shown in Fig. 3(b). For the

same reason, the shift register bank of the sign bit () data can also

be implemented as shown in Fig. 3, and a 64-bit row buffer is also

used to store the sign data to deal well with the three coding passes

in next stripe. Moreover, the “vertically causal context formation”

(stripe-causal) [1][5] is also adopted to eliminate the dependence

of the significance state variables for the coding operations in the

next stripe.

D. FIFO Architecture and Arithmetic Encoder

The output rate of the context/decision (CX/D) pairs is variable for

the bit-plane coder. Because of the proposed stripe-column-based

pass-parallel operation, the CX/D pairs, which vary from 1 to 10,

are generated in a stripe-column per cycle. Fig. 4 shows the distri-

bution of the CX/D pairs for each bit-plane in three coding passes.

A parallel arithmetic encoder (AE) architecture with three two-

stage pipelined arithmetic encoders is proposed to encode multiple

CX/D pairs for three coding passes in parallel as shown in Fig. 1.

Because of the variable output rate for CX/D pairs, the throughput

requirement of the AE and FIFO length are other design challenges.

Fig. 5 shows the normalized processing time for different FIFO

size with different throughput of the AE architecture. The analysis

result is simulated for the 512 512 Lena image with 64 64 code

block. Each curve stands for the influence of the FIFO size on the

normalized processing time for the particular throughput rate of the

AE in three coding passes. In Fig. 5, the case of the “curve A”

cannot deal well with the CX/D pairs due to its poor throughput.

When the multi-symbol AE is utilized with the reasonable FIFO

size, the CX/D pairs can be encoded with less stall cycles such as

the curve B~E in Fig. 5. However, the hardware cost of the 3-

symbol and the 4-symbol AE architecture are much higher than 2-

symbol AE architecture in terms of the literature [7]. For this rea-

son, the case of the “curve C” is the best choice for the trade-off

between the hardware cost and the throughput requirement. Fur-

thermore, the proposed AE architecture is based on the high per-

formance 2-stage pipelined AE, which is proposed in [8].

In order to deal well with the multiple CX/D pairs with variable

throughput rate form the CF, we proposed a parallel-in parallel-out

FIFO with pipelined sorter between the CF and the AE. The detail

architecture of the proposed FIFO architecture is shown in Fig. 6.

The pipelined sorter is devised to sort the available data and to

merge them together. The parallel-in-parallel-out RegBank fetch

the sorted CX/D pairs, which are available, and then deliver them

to the FIFO memories. The FIFO memories are implemented by

using the tsmc .18 m two-port register file. Moreover, in order to

reduce the memory size of the FIFO architecture, each register file

is designed to store 256 CX/D pairs for each coding passes. The

total size of three register files is about 4K.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8

Fig. 4. The distribution of the context/decision pairs for three coding

passes from MSB bit-plane to LSB bit-plane (512 512 Lena image)

Throughput vs. FIFO Size for MQ Coder

FIFO Size (bits)

Processing Time

Ratio

A---1:1:1 Throughput Rate of the AE for Three Coding Passes

B---2:2:1 Throughput Rate of the AE for Three Coding Passes

C---2:2:2 Throughput Rate of the AE for Three Coding Passes

D---3:3:3 Throughput Rate of the AE for Three Coding Passes

E---4:4:4 Throughput Rate of the AE for Three Coding Passes

Fig. 5. Influence of the FIFO size on the processing time ratio for

different throughput rate of the AE in three coding passes

Context

Formation

Two-Stage

Pipelined 6-level

Sorter

4-level Sorter

Two-Stage

Pipelined 10-level

Sorter

RegBank

6x16

(8-wr)

RegBank

4x8

(4-wr)

RegBank

6x16

(10-w, 8-r)

tsms .18

RF2SH_48x32

tsmc .18

RF2SH_16x64 Parallel

AEs

Addr. genertor & Control Circuit

tsmc .18

RF2SH_48x32

Fig. 6. The detail architecture of the proposed parallel-in-parallel-out

FIFO architecture

III ­ 966

3. IMPLEMENTATION AND COMPARISONS

A. Implementation Result

The proposed architecture is synthesized using the Artisan .18 m

cell library and tsmc .18 m 1P6M technology, and the clock fre-

quency is 100 MHz. The size of the code block is 64 64 and the

bandwidth of the nonzero bit-planes is 12 bits. The gate count and

memory requirement of the proposed architecture are listed in Ta-

ble II. The total gate count of our architecture is about 63K gates

(NAND2); and further, the SSU only uses about 1131 gates to

calculate the state variables on the fly instead of the huge state

variable memories. This result of the chip implementation demon-

strates the proposed memory-free algorithm can reduce the hard-

ware cost substantially.

Table III summaries the run time performance statistics. In this

experiment, three test images are used: Lena, Pepper, and Airplane,

and all images are full color (4:4:4). These images are all 512 512

with 256 256 tile size and 64 64 code-block size. The 5/3 DWT

filter is used with two levels of decompositions. The processing

rate is defined as total cycles by total image pixels. According to

this table, proposed architecture can process the lossless coding

about 50MSamples/sec at 100-MHz. Therefore, It can lossless

encode XGA (1024 768, 4:2:2) resolution pictures 30fps in real

time.

B. Performance Comparison

The performance comparison among our proposed architecture and

other EBC architectures is presented in Table IV. For the case of

the m-bit nonzero bit-planes and the W W code block, this table

shows the average processing time (cycle counts) and the memory

size. In terms of this table, the total gate count of the proposed

architecture is smaller than other architectures in [3]-[6]. Moreover,

the 4-Kbits Memory is devised as the FIFO memories, and pro-

posed bit-plane coder is implemented using the logic gates without

any state variable memory. According to the results of the average

processing time in the table, the number of speed-up is about 2 ~ 5

times than other architectures in [2]-[5].

4. CONCLUSION

In this paper, a parallel and memory efficient Embedded Block

Coding (EBC) architecture is proposed. In the first place, in order

to reduce the hardware cost, we devise the SSU circuit to calculate

state variables on the fly without any state variable memory in the

light of the proposed memory-free algorithm [9] for bit-plane

coder. The stripe-column-based pass-parallel operation is also

proposed in our architecture not only to perform three coding pass

in pipeline operation but also to process four samples within the

stripe-column in parallel. According to the analysis, we also pro-

posed a parallel-in-parallel-out FIFO architecture and the parallel

AE architecture with 2-stage pipeline to deal well with the con-

text/decision pairs because of the high throughput rate of the con-

text formation. The experimental result shows that our architecture

can process the lossless coding about 50MSamples per sec at 100-

MHz. Therefore, it can lossless encode XGA (1024 768, 4:2:2)

resolution pictures 30fps in real time.

5. REFERENCES

[1] JPEG-2000 Part 1 Final Committee Draft Version 1.0, ISO/IEC

JTC1/SC29/WG1 N1646R.

[2] Kishore Andra, Chaitali Chakrabarti, and Tinku Acharya, “A High-

Performance JPEG2000 Architecture,” IEEE Transactions on Circuits

and Systems for Video Technology., vol. 13, no. 3, pp. 209-218,

March 2003.

[3] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Liang-Gee Chen,

“Analysis and Architecture Design of Block-Coding Engine for

EBCOT in JPEG-2000,” IEEE Transactions on Circuits and Systems

for Video Technology., vol. 13, no. 3, pp. 219-230, March 2003.

[4] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-Wei Jen,

“High-Speed Memory-Saving Architecture for the Embedded Block

Coding in JPEG2000,” IEEE International Symposium on Circuits

and Systems., vol. 5, pp. V-133 - V-136, May 2002.

[5] Jen-Shiun Chiang, Yu-Sen Lin, and Chang-Yo Hsieh, “Efficient Pass-

Parallel Architecture for EBCOT in JPEG2000,” IEEE International

Symposium on Circuits and Systems., vol. 1, pp. I-773 - I-776, May

2002.

[6] Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-Hao Chang and

Liang-Gee Chen, “Parallel Embedded Block Coding Architecture for

JPEG 2000,” IEEE Transactions on Circuits and Systems for Video

Technology., vol. 15, no. 9, pp. 1086-1097, Sept. 2005.

[7] Grzegorz Pastuszak, “A Novel Architecture of Arithmetic Coder in

JPEG2000 Based on Parallel Symbol Coding,” IEEE International

Conference on Parallel Computing in Electrical Engineering., pp.

303-308, Sept. 2004

[8] Yu-Wei Chang, Hung-Chi Fang, and Liang-Gee Chen, “High Per-

formance Two-Symbol Arithmetic Encoder in JPEG 2000,” IEEE In-

ternational Symposium on Consumer Electronics., pp. 101-104, Sept.

2004.

[9] Lien-Fei Chen, Tai-Lun Huang, and Yeong-Kang Lai, “Memory

Analysis and Throughput Enhancement for Cost Effective Bit-Plane

Coder in JPEG2000 Applications,” IEEE International Conference on

Acoustics, Speech, and Signal Processing., vol. 5, pp. 17-20, March

2005.

TABLE II

HARDWARE REQUIREMENT OF THE PROPOSED ARCHITECTURE

Module Datapath (NAND2) Memory (bits)

Bit-Plane Coder 7280 N/A

FIFO 15846 4096

Arithmetic Coder 40300 N/A

Total 63426 4096

TABLE III

PROCESSING CYCLES AND RATE OF PROPOSED ARCHITECTURE

Images Total Cycles Processing Rate

Lena 1572181 1.9991

Pepper 1712581 2.1777

Airplane 1490016 1.8947

TABLE IV

PERFORMANCE COMPARISON FOR W W CODE BLOCK AND m-BIT

NONZERO BIT-PLANES. ALL RESULTS OF THE CHIP IMPLEMENTATION ARE

BASED ON THE 64 64 CODE BLOCK.

Processing Time

(Cycle Counts)

Gate Counts

(NAND2)

Memory

(bits)

[2] 3 m W2
5200 3807

[3] 1.3 m W2
19000 12808

[4] 1.3 m W2
21589 8192

[5] m W2
23928 8192

[6] 1.5 W2
91758 768

Proposed 0.325 m W2
63426 4096

III ­ 967

