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ABSTRACT 

In this paper, a memory efficient parallel Embedded Block Coding 

(EBC) architecture with throughput enhancement in JPEG 2000 

applications is proposed. In order to reduce the memory size, the 

memory-free algorithm for state variables in the context formation 

(CF) is proposed. The proposed algorithm eliminates the state vari-

able memories by calculating three coding state variables ( p+1[n],

p+1[n], and p[n]) on the fly. We also propose the stripe-column-

based pass-parallel operation to perform three coding passes and 

four samples within the stripe-column concurrently. The FIFO 

architecture between the high throughput CF and the arithmetic 

encoder (AE) is also optimized by the pipelined sorter and the 

parallel-in parallel-out register file. Owing to the proposed high 

parallel CF, we propose a parallel and two-stage pipelined AE 

architecture to deal well with the context/decision (CX/D) pairs for 

three coding passes. The experimental results show that memory 

size of the proposed architecture is smaller than other familiar 

architectures, and the proposed architecture can process the loss-

less coding about 50MSamples/sec at 100-MHz. 

1. INTRODUCTION 

JPEG 2000 is an emerging standard for still image coding devel-

oped by ISO/IEC JTC1/SC29/WGI [1]. There are high expecta-

tions for the use of JPEG 2000 in consumer electronic systems 

because of its superior features such as lower tile boundary artifact 

and higher compression efficiency. The key components of the 

JPEG 2000 system are discrete wavelet transform (DWT) and the 

entropy coding for the code-block data using the embedded block 

coding with optimized truncation (EBCOT) algorithm. The 

EBCOT algorithm contains two parts: tier-1 and tier-2. It is used to 

encode the code-block via a context-based binary arithmetic coder 

in tier-1, and the tier-2 is used for the rate-distortion (R-D) optimi-

zation and the bit-stream of the JPEG2000 format. In the light of 

the analysis of the computational complexity for JPEG 2000, the 

EBC architecture (EBCOT tier-1) is the bottleneck in the JPEG 

2000 system [3].  

According to the literature [2]-[6], the speed-up methods and the 

memory requirement of the state variables are the design chal-

lenges for the high performance and cost effective CF architecture 

in EBC. An efficient CF architecture is proposed in [2] to reduce 

the number of memory accesses. In the literature [3], the sample 

skipping (SS) and group-of-column skipping (GOCS) techniques 

are utilized to rapidly detect whether the samples in the code-block 

have already been coded to reduce the processing time. In addition 

to speed-up via the SS and GOCS methods, the pass-parallel con-

text modeling (PPCM) in [5] is an alternative speed-up approach 

to perform three coding passes in parallel. The architecture [6] 

proposed a parallel EBC algorithm and performed all bit-planes in 

parallel and only used 64 12-bit memory to keep the data-reuse 

requirement. 

In the architecture [2]-[6], many speed-up methods are proposed 

to increase the throughput. However, a huge amount of the state 

variable memory requirements is still a bottleneck to reduce the 

hardware cost, and what’s more, the memory saving mechanism to 

reduce the total memory size is only discussed in architecture [4] 

and [6]. In the literature [4], the memory saving algorithm is pro-

posed to save the magnitude refinement state variable memory (4K 

bits) on the strength of the SS and GOCS methods. The architec-

ture [6] presented a parallel EBC algorithm to achieve the memory 

efficient requirement.  

In this paper, we propose a memory efficient and high through-

put parallel EBC architecture via the memory-free algorithm and 

the stripe-column-based pass-parallel operation in the CF architec-

ture. However, owing to the proposed parallel CF architecture, the 

parallel-in parallel-out FIFO architecture and the high throughput 

AE are also proposed in our parallel EBC architecture. 

2. PROPOSED EBC ARCHITECTURE 

A. Memory-Free Algorithm for Bit-Plane Coder 

The EBCOT tier-1 algorithm consists of two major units: the bit-

plane coder and the arithmetic coder (AE). The bit-plane coder, 

which is also called the context formation (CF), is the first stage in 

the EBCOT tier-1 algorithm. The quantized subband data is parti-

tion into many square blocks, which are called the code blocks. 

The bit-plane coder encodes each bit-plane of the code block by 

performing three coding passes and produces the context/decision 

(CX/D) pairs. 

Table I shows the traditional memory requirement for a code-

block to perform the three coding passes in the bit-plane coder. 

This table shows that the memory modules of two bit-plane data 

and three coding state variables are required during a code-block 

coding. For example, the quantized transform coefficients have the 

TABLE  I

THE MEMORY REQUIREMENT FOR CODE-BLOCK CODING ALGORITHM

Category Name Description 

p[n] The p-th magnitude bit-plane 
Bit-plane Data

[n] The sign bit-plane 

p[n] The new significance state of the bit-plane p

p[n]
The new magnitude refinement (MR) state of 

the bit-plane p

Coding State 

Variable 

p[n] The visited state of the bit-plane p
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m-bit precision (MSB ~ LSB: m-1 ~ 0) and the current bit-plane p

will be coded. The significance state variable p+1[n], which is 

updated during coding the previous bit-plane p 1, must be used 

to perform the three coding passes in the current bit-plane p. In 

addition, the magnitude refinement (MR) state variable p+1[n] is 

necessary to perform the pass 2 coding in the current bit-plane p.

According to the proposed memory-free algorithm [9], the state 

variable memories can be eliminated and the state variables ( p+1[n]

and p+1[n]) can be calculated on the fly using the OR operation of 

the bit-plane sample data. 

B. State Variable Schedule Unit (SSU) 

Fig. 1 shows the block diagram of the proposed memory efficient 

parallel EBC architecture. After DWT, the subband data stored in 

the code-block memory are fed into the data register. For the case 

of the m-bit nonzero coefficients, the bit-plane p will be executed 

in the context window logic to perform three coding passes. Owing 

to the stripe-column-based pass-parallel operation, the four sam-

ples within the stripe-column will be coded in parallel. The four 

coefficients within the stripe-column are stored in 4 (m 1)-bit 

data register consequentially.  

The sign bit-plane data ( [n]) and the p-th magnitude bit-plane 

values ( p[n]) can be fetched from the data register directly. Be-

cause of the stripe-column-based pass-parallel operations, the vis-

ited state variable ( p[n]) is not taken into account in the proposed 

architecture. Therefore, we only consider significance state vari-

able ( p+1[n]) and MR state variable ( p+1[n]). In the light of the 

literature [9], the SSU is devised to calculate the state variables 

( p+1[n] and p+1[n]) on the fly using the proposed memory-free 

algorithm. The detail architecture of the SSU circuit is shown in 

Fig. 2. There are four SSU circuits to calculate the corresponding 

state variables of the samples within a stripe-column in the pro-

posed EBC architecture. In the Fig. 2, we can also use the binary 

tree and inverse binary tree OR-gates architecture instead of the 

ripple OR-gates to reduce the critical path of the SSU circuit. 

C. Stripe-Column-Based Pass-Parallel Operation

In order to strengthen the throughput of the bit-plane coder, we 

present a fully pipelined architecture, which processes a complete 

stripe-column concurrently and pass-parallel operation in the con-

text formation (CF). We proposed a pass prediction mechanism to 

perform the stripe-column-based pass-parallel operation. The pro-

posed stripe-column-based pass-parallel operation and the archi-

tecture of the pass prediction are also shown in the literature [9]. 

Fig. 2. Detail architecture of the State Variable Schedule Unit (SSU) 

circuit. 
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Fig. 1. Block diagram of the proposed Embedded Block Coding (EBC) architecture. 
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Fig. 3. (a) The shift register banks of the significance state data ( ) and 

magnitude bit-plane data ( ). (b) The detail architecture of the new signifi-

cance state data ( ) for pass 1 and pass3 in (a). 
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For the context window logic, in order to perform three coding 

passes in pipeline, we should use three shift register banks to im-

plement the context window logic. There are three data must be 

utilized in the three shift register banks and these three data are the 

sign bit ( ), the magnitude bit-plane data ( ), and the significance 

state variables ( ). The detail architecture of the shift register bank 

is shown in Fig. 3. The rectangle in the figure stands for the con-

text window. In Fig. 3, two 64-bit row buffers are devised to store 

the significance state data ( ) for pass 1 and pass 3 respectively. 

The pick circles and the purple circles in Fig. 3 (a) represent the 

significance within the row buffer for pass 1 and pass 3 respec-

tively. These two data will be exploited to perform three coding 

passes in the next stripe. Furthermore, the significance predictor is 

also intended to anticipate the correct significance state ( ) for pass 

1 and pass 3 as a result of the dependence of the significance state 

for the four samples within the stripe-column. In Fig. 3(a), the 

green circles and the black circles represent the significance state 

variables and the magnitude bit-plane data, which are fetched from 

the SSU circuit respectively. The red circles and the blue circles 

stand for the new significance state after the coding of the pass 1 

and pass 3 respectively. The detail architecture of the significance 

predictor for pass 1 and pass 3 is also shown in Fig. 3(b). For the 

same reason, the shift register bank of the sign bit ( ) data can also 

be implemented as shown in Fig. 3, and a 64-bit row buffer is also 

used to store the sign data to deal well with the three coding passes 

in next stripe. Moreover, the “vertically causal context formation” 

(stripe-causal) [1][5] is also adopted to eliminate the dependence 

of the significance state variables for the coding operations in the 

next stripe. 

D. FIFO Architecture and Arithmetic Encoder

The output rate of the context/decision (CX/D) pairs is variable for 

the bit-plane coder. Because of the proposed stripe-column-based 

pass-parallel operation, the CX/D pairs, which vary from 1 to 10, 

are generated in a stripe-column per cycle. Fig. 4 shows the distri-

bution of the CX/D pairs for each bit-plane in three coding passes. 

A parallel arithmetic encoder (AE) architecture with three two-

stage pipelined arithmetic encoders is proposed to encode multiple 

CX/D pairs for three coding passes in parallel as shown in Fig. 1. 

Because of the variable output rate for CX/D pairs, the throughput 

requirement of the AE and FIFO length are other design challenges. 

Fig. 5 shows the normalized processing time for different FIFO 

size with different throughput of the AE architecture. The analysis 

result is simulated for the 512 512 Lena image with 64 64 code 

block. Each curve stands for the influence of the FIFO size on the 

normalized processing time for the particular throughput rate of the 

AE in three coding passes. In Fig. 5, the case of the “curve A” 

cannot deal well with the CX/D pairs due to its poor throughput. 

When the multi-symbol AE is utilized with the reasonable FIFO 

size, the CX/D pairs can be encoded with less stall cycles such as 

the curve B~E in Fig. 5. However, the hardware cost of the 3-

symbol and the 4-symbol AE architecture are much higher than 2-

symbol AE architecture in terms of the literature [7]. For this rea-

son, the case of the “curve C” is the best choice for the trade-off 

between the hardware cost and the throughput requirement. Fur-

thermore, the proposed AE architecture is based on the high per-

formance 2-stage pipelined AE, which is proposed in [8]. 

In order to deal well with the multiple CX/D pairs with variable 

throughput rate form the CF, we proposed a parallel-in parallel-out 

FIFO with pipelined sorter between the CF and the AE. The detail 

architecture of the proposed FIFO architecture is shown in Fig. 6. 

The pipelined sorter is devised to sort the available data and to 

merge them together. The parallel-in-parallel-out RegBank fetch 

the sorted CX/D pairs, which are available, and then deliver them 

to the FIFO memories. The FIFO memories are implemented by 

using the tsmc .18 m two-port register file. Moreover, in order to 

reduce the memory size of the FIFO architecture, each register file 

is designed to store 256 CX/D pairs for each coding passes. The 

total size of three register files is about 4K. 
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Fig. 4. The distribution of the context/decision pairs for three coding 

passes from MSB bit-plane to LSB bit-plane (512 512 Lena image)
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Fig. 5. Influence of the FIFO size on the processing time ratio for 

different throughput rate of the AE in three coding passes
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3. IMPLEMENTATION AND COMPARISONS 

A. Implementation Result

The proposed architecture is synthesized using the Artisan .18 m

cell library and tsmc .18 m 1P6M technology, and the clock fre-

quency is 100 MHz. The size of the code block is 64 64 and the 

bandwidth of the nonzero bit-planes is 12 bits. The gate count and 

memory requirement of the proposed architecture are listed in Ta-

ble II. The total gate count of our architecture is about 63K gates 

(NAND2); and further, the SSU only uses about 1131 gates to 

calculate the state variables on the fly instead of the huge state 

variable memories. This result of the chip implementation demon-

strates the proposed memory-free algorithm can reduce the hard-

ware cost substantially. 

Table III summaries the run time performance statistics. In this 

experiment, three test images are used: Lena, Pepper, and Airplane, 

and all images are full color (4:4:4). These images are all 512 512

with 256 256 tile size and 64 64 code-block size. The 5/3 DWT 

filter is used with two levels of decompositions. The processing 

rate is defined as total cycles by total image pixels. According to 

this table, proposed architecture can process the lossless coding 

about 50MSamples/sec at 100-MHz. Therefore, It can lossless 

encode XGA (1024 768, 4:2:2) resolution pictures 30fps in real 

time. 

B. Performance Comparison

The performance comparison among our proposed architecture and 

other EBC architectures is presented in Table IV. For the case of 

the m-bit nonzero bit-planes and the W W code block, this table 

shows the average processing time (cycle counts) and the memory 

size. In terms of this table, the total gate count of the proposed 

architecture is smaller than other architectures in [3]-[6]. Moreover, 

the 4-Kbits Memory is devised as the FIFO memories, and pro-

posed bit-plane coder is implemented using the logic gates without 

any state variable memory. According to the results of the average 

processing time in the table, the number of speed-up is about 2 ~ 5 

times than other architectures in [2]-[5]. 

4. CONCLUSION 

In this paper, a parallel and memory efficient Embedded Block 

Coding (EBC) architecture is proposed. In the first place, in order 

to reduce the hardware cost, we devise the SSU circuit to calculate 

state variables on the fly without any state variable memory in the 

light of the proposed memory-free algorithm [9] for bit-plane 

coder. The stripe-column-based pass-parallel operation is also 

proposed in our architecture not only to perform three coding pass 

in pipeline operation but also to process four samples within the 

stripe-column in parallel. According to the analysis, we also pro-

posed a parallel-in-parallel-out FIFO architecture and the parallel 

AE architecture with 2-stage pipeline to deal well with the con-

text/decision pairs because of the high throughput rate of the con-

text formation. The experimental result shows that our architecture 

can process the lossless coding about 50MSamples per sec at 100-

MHz. Therefore, it can lossless encode XGA (1024 768, 4:2:2) 

resolution pictures 30fps in real time. 
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TABLE  II 

HARDWARE REQUIREMENT OF THE PROPOSED ARCHITECTURE

Module Datapath (NAND2) Memory (bits)

Bit-Plane Coder 7280 N/A 

FIFO 15846 4096 

Arithmetic Coder 40300 N/A 

Total 63426 4096 

TABLE  III 

PROCESSING CYCLES AND RATE OF PROPOSED ARCHITECTURE

Images Total Cycles Processing Rate

Lena 1572181 1.9991 

Pepper 1712581 2.1777 

Airplane 1490016 1.8947 

TABLE  IV 

PERFORMANCE COMPARISON FOR W W CODE BLOCK AND m-BIT 

NONZERO BIT-PLANES. ALL RESULTS OF THE CHIP IMPLEMENTATION ARE 

BASED ON THE 64 64 CODE BLOCK.

Processing Time 

(Cycle Counts) 

Gate Counts 

(NAND2)

Memory

(bits)

[2] 3 m W2
5200 3807 

[3] 1.3 m W2
19000 12808 

[4] 1.3 m W2
21589 8192 

[5] m W2
23928 8192 

[6] 1.5 W2
91758 768 

Proposed 0.325 m W2
63426 4096
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