
ARCHITECTURE FOR HIERARCHICAL BLOCK MOTION ESTIMATION USING
VARIABLE BLOCK SIZES

Teahyung Lee and David V. Anderson

School of Electrical and Computer Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332–0250 Email: taehyung,dva@ece.gatech.edu

ABSTRACT

In this paper, we propose a new architecture for hierarchical
block motion estimation (HBME) algorithms using variable
block sizes. The binary tree architecture (BTA) is well suited
to HBME with constant block size because of the interde-
pendence between computations in different levels of search.
However, HBME algorithms based on variable block sizes
can decrease the processing element (PE) utilization of BTA.
The modified binary tree architecture (MBTA) presented here
improves the PE utilization and area efficiency of BTA with
low overhead for HBME algorithms using variable block
sizes. We describe the architecture of MBTA and present the
comparison of the performance with BTA for wavelet-based
multi-resolution motion estimation (MRME) algorithms.

1. INTRODUCTION

Motion estimation is a key block in video coding schemes
because it can reduce bit-rates dramatically by removing tem-
poral redundancies. The block-matching algorithm (BMA)
is used as a motion estimation method in most video coding
systems. BMA finds a block that is most similar to a cur-
rent block within a pre-defined search area (SA) in a refer-
ence frame. The full search BMA (FSBMA) has been widely
researched because of its high performance and low control
overhead [1].

Hierarchical block motion estimation was developed to
reduce the high computational complexity and maintain com-
parable performance to the FSBMA. In HBME, the search for
motion is performed in a hierarchical way, where the size of
the block and/or the search area can vary depending on the
hierarchy level. Each subsequent level in HBME is depen-
dent on the motion vector of the previous level. Therefore,
low-latency architecture is required in HBME in order to fin-
ish the current level before the beginning of the next level of
motion estimation. The binary tree architecture (BTA) is one
of the most suitable architectures for this requirement.

Previous work regarding architectures for HBME are
reported in [2]-[3]. Jehng et al. [2] and Gupta and
Chakrabarti [4] presented architectures using BTA for con-
stant computational block sizes. Lee et al. [3] proposed a 1-D

systolic array processor using the largest common block size
among variable block sizes in hierarchical motion estimation
algorithm.

In this paper, we suggest a modified binary tree architec-
ture (MBTA) for hierarchical block motion estimation algo-
rithms using variable block sizes. This architecture achieves
low-latency by using the characteristic of BTA and performs
motion estimation for different block sizes without decreasing
the processing element (PE) utilization. MBTA can execute
the block matching operations for several candidate blocks of
small size in a low-resolution image concurrently if the block
size is small enough compared to the number of PE’s.

The rest of the paper is organized as follows. A brief in-
troduction of HBME is presented in section 2. The binary
tree architecture is described in section 3. The proposed ar-
chitecture is explained in section 4. In section 5, we show and
compare the performance of the proposed architecture with
BTA and conclusions are presented in section 6.

2. HIERARCHICAL BLOCK MOTION
ESTIMATION (HBME) ALGORITHMS

Low Resolution High Resolution

Scaling by 2

Initial MV

Refined MV

Differential MV

Search area (SA)

Fig. 1. Multi-resolution motion estimation.

Hierarchical block motion estimation has been developed
to reduce the computational complexity and maintain good
performance compared to the full search block-matching al-
gorithm. In hierarchical block motion estimation, the size of
the block and/or the search area varies depending on the level

III 960142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

of hierarchy. At lower levels of hierarchy, larger block sizes
are used to estimate the broad motion of the image, while at
higher levels of hierarchy, smaller block sizes are employed
to estimate the detailed motion of the image. However, the
block size in computation for motion estimation can be the
same. Therefore, the HBME algorithms can be divided into
two categories depending on computational block sizes at dif-
ferent levels, constant block size and variable block size. The
efficient architecture of the constant block size algorithms are
more appealing because fixed block size helps to increase the
processing element utilization and simplify data-flow. The
three-step hierarchical search (3-SHS) is considered as one of
the best constant block size algorithms. Some well-defined
architectures for the constant block size algorithms are pre-
sented in [2], [4],and [5]. In the variable block size case,
a promising solution is the multi-resolution motion estima-
tion (MRME) algorithm. In conventional MRME schemes,
motion vectors (MV’s) are first estimated at the lowest res-
olution. This is reasonable since most of the image energy
is preserved at this resolution. And then MV’s are refined at
other finer resolutions depending on the corresponding initial
MV’s at lower resolutions (see Fig. 1). Each lower resolution
image is subsampled by 2 from the previous higher resolution
image. A few hardware architectures have been proposed for
MRME-type algorithms in [3] and [6].

Most of the hardware architectures for motion estima-
tion algorithms have been implemented for a fixed block size.
However, in order to implement the MRME architecture ef-
ficiently, processing elements have to execute the variable
block sizes to find the best motion vector. Low latency for
lower resolution images are required since there is inter-level
dependency among different resolution levels. The computa-
tional complexity of MRME for a 16 × 16 block size at the
finest resolution is derived below,

C
mrme

= C
2×2

+ C
4×4

+ C
8×8

+ C
16×16

= {K3(w3)2
(1

23

)2

+ K2(w2)2
(1

22

)2

+ K1(w1)2
(1

2

)2

+ K0(w0)2(1) }

× (M × 162) ×
(W · H

162

)
· f (operations/s),

(1)

where Cn×n is the searching complexity associated with n×
n block size. W · H is the image size, (wi)2 is the search
range at level i of resolution, M is the number of operations
required for finding the sum of absolute difference, f is the
image frame rate, and Ki the number of images at level i of
resolution.

3. BINARY TREE ARCHITECTURE

The binary tree architecture (BTA), which is especially well
suited for HBME algorithms with constant block size such as
3-SHS, was presented in [2]. This architecture achieves low
latency and computation time. Each stage of the tree architec-
ture can be regarded as a parallel pipeline stage with the data
path length equal to the tree height as described in Fig. 2. The
total latency in the BTA is log p

2 +2, where p is the number of
leaf processors. The tree architecture makes no assumption of
regular data-flow for block matching operation within the SA.
This makes the tree architecture suitable for HBME because
it provides low-latency and irregular data flow is tolerated.
The BTA is well matched to HBME, however, the processing
element efficiency decreases when the block size is variable.

M

A

A

A A

A

A

A

A

A

A A

A

A

A

A

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X
15

Y
15

D

X
16

Y
16

MV

D

X

1

Y
1

D

X

2

Y
2

A: Adder Unit
M: min MADer Unit

D: Differenceer Unit
MV: motion vector

X
i
: Input image pixel

Y
j
: Previous iamge pixel

Fig. 2. Binary tree architecture for N2 = 16, where N2 is a block size.

4. THE PROPOSED ARCHITECTURE

In this section, we describe the proposed binary tree architec-
ture and data shuffling network to overcome the decrease in
PE efficiency when using BTA for variable block size.

4.1. Modified Binary Tree Architecture

To implement an HBME algorithm with interdependence be-
tween the hierarchy levels, BTA is a good solution except that
it does not work well for variable block sizes. To maintain
the characteristic of the binary tree architecture without the
loss of PE utilization efficiency, parallel computations with-
out data dependence could be exploited. In general this is the
case if HBME does not require dependency within a level of
hierarchy. In such a scenario, we can perform parallel com-
putation within the search range (SA) of the current block
with the flexible data-flow adaptation within a level of hierar-
chy. For the variable block size algorithms, the height of the

III 961

BTA should be changed. We propose the modified binary tree
structure to make the BTA height flexible (see Fig. 3). Effi-
cient utilization of MUX’s and DEMUX’s within the BTA is
enough to achieve this functionality. Therefore, the overhead
for the MBTA is low. Figure 3 shows the MBTA with a 2×2
block as the smallest block size. The latency of the MBTA
varies depending on the block size as opposed to the BTA,
which has the same latency regardless of the block size. The
latency of the MBTA is log p

2 + 2 for a full tree and log p
2 + 1

for a block size smaller than the number of leaf processors, p.
In addition, we can reduce the number of cycles to perform
the HBME by using the idle leaf processors in smaller block
sizes.

M

A

A

A A

A

A

A

DEMUX DEMUX

A

A

A A

A

A

A

DEMUX DEMUX

A

DEMUXDEMUXMM

MUXMUX

'0'

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

D

X Y

MV

A: Adder Unit
M: min MADer Unit

D: Differenceer Unit
MV: motion vector

X
i
: Input image pixel

Y
j
: Previous iamge pixel

D

X

1

Y
1

D

X

2

Y
2

D

X
15

Y
15

D

X
16

Y
16

Fig. 3. Modified binary tree architecture for N2 = 16, where N2 is the
largest block size.

4.2. Data Shuffling Network

The parallel computation in the MBTA and BTA needs appro-
priate data transfer from memory to leaf processors . We need
as many memory modules as the number of leaf processors to
maximize processor utilization. An image pixel data distri-
bution among memory modules is denoted in Fig. 4. Four
parallel processing of block matching operation is possible
for a 2×2 block size in Fig. 4. As we can see in Fig. 5, which
is a data shuffling network based on Fig. 4, some data need
to be distributed to more than one leaf processor in order to
calculate the motion by parallel computation within the SA.
To make a efficient data distribution network, we propose a
data shuffling network for the MBTA. This is composed of
3 stages. The first stage is fed by memory modules and per-
forms the column position movement of the data. The next
stage changes the row position of the data and the last stage
feeds the correct data to the leaf processors using MUX’s.
The A, B, and C in Fig. 5 are switch units, which were used
in [4]. Even though channels among switch units in Fig. 5 are

tailored to [7] and [8], we can change these structure depend-
ing on HBME without problem. The number of switch levels
are 2×N + 2 in a N2 block size. By using the data shuffling
network and parallel processing, we can reduce the number
of cycles for HBME.

1 2 3 4

5 6 7 8

 9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

 9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

 9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

 9 10 11 12

13 14 15 16

Fig. 4. Image pixel data distribution among 16 memory modules for 16
leaf processors and a 2 × 2 block size. (Four parallel processing of block
matching operation is possible for a 2 × 2 block size)

5. PERFORMANCE COMPARISON
AND DISCUSSION

In this section, we compare the efficiency of the MBTA and
BTA for wavelet-based MRME algorithms, which are HBME
algorithms with variable block sizes [7], [8]. In conventional
wavelet-based MRME schemes, motion vectors (MV’s) are
first estimated at the lowest resolution. And then MV’s are
refined at other subbands depending on the corresponding ini-
tial MV’s at the lowest resolution or those of one-level lower
resolution subband with same direction, such as horizontal,
vertical, and diagonal (Fig. 1). The search range is the same
for all subbands. If we assume the block size for the full reso-
lution image to be 16 × 16 then the smallest block size in the
algorithm is 2 × 2 and largest block size is 8 × 8. In equa-
tion (1), K3 = 1, K2 = K1 = 3, K0 = 0, and which are the
number of subbands at different levels.

The parameter values from [4] are used to perform the
comparison between different architectures. Therefore, we
assume that on-chip memory access time is 70 ns and off-
chip memory access time is 200 ns. Table 1 shows the area
estimation based on the minimum number of adders for real-
time video encoding because most data-path units in our ar-
chitecture can be implemented using adders and the areas of
MUX’s and DEMUX’s are much smaller than other units in
the MBTA. The number of adders for the BTA and MBTA are
2×N2 and 2×N2 + 2(N/2− 1), where N2 is a block size.
According to Table 1, the number of adders for the MBTA
ranges from 100 to about 60% of that needed for the BTA.

III 962

Module

0

Module

1

Module

2

Module

3

Module

4

Module

5

Module

6

Module

7

Module

8

Module

9

Module

10

Module

11

Module

12

Module

13

Module

14

Module

15

A
A

A
A

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

A
A

A
A

B
B

B
B

B
B

B
B

.

.

.

.

.

.

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

Change column position Change row position

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

M
o

d
ifie

d
B

in
a

r
y

T
r
e
e

P
r
o

e
c
sso

r
s

Fig. 5. Data shuffling network for modified binary tree architecture with
16 leaf processors for [7] and [8].

The area for both is the same up to 8 adders, which is same as
a 2×2 block, but as the image size, frame rates, and/or search
range increases the MBTA needs less area than the BTA. For
up to 8 adders, there is very little improvement since parallel
computation is impossible. As the number of adders increase,
the MBTA has the chance to perform parallel computations
leading to improvements. Beyond a certain number of adders,
the reduction in number of cycles can also lead to reduction in
the required number of leaf processors for real time execution.
Table 2 shows the number of execution cycles for the BTA
and MBTA with the same number of leaf processors. As ex-
pected, with the increase in number of leaf processors, MBTA
provides gains in terms of execution cycles because more par-
allel computations are possible. The speed-up is from around
1 to 1.62. Therefore, MBTA shows better process utilization
than BTA.

Hardware resource requirement comparison for MRME
MBTA versus BTA (for block size of 16 x 16)

Picture No. of adders No. of adders
format (search range = 4 x 4) (search range = 8 x 8)

MBTA BTA MBTA BTA
288x352, 10 Hz 4 4 16 16
288x352, 30 Hz 8 8 34 64
576x720, 25 Hz 34 64 142 256

Table 1. Area estimation by the minimum number of adders
for real-time video encoding.

6. CONCLUSIONS

In this paper, we propose a modified binary tree architecture
and a data shuffling network for hierarchical block motion es-

Execution cycles for MBTA and BTA
Block size = 16 x 16

Picture No. of execution cycles (in mega cycles)
format search range = 4 x 4

8 leaf processors 16 leaf processors 32 leaf processors
MBTA BTA MBTA BTA MBTA BTA

288x352, 10 Hz 2.032 2.154 1.018 1.204 0.507 0.824
288x352, 30 Hz 6.095 6.463 3.053 3.612 1.521 2.471
576x720, 25 Hz 20.78 22.07 10.41 12.35 5.225 8.464

Table 2. The execution cycles for the same number of leaf
processors in BTA and MBTA.

timation algorithms using variable block sizes. Using parallel
computations, the MBTA improves the processor element uti-
lization and area efficiency compared to the binary tree archi-
tecture, without adding significant overhead. Parallel compu-
tations are easily performed with the support of the proposed
data shuffling network.

We compare the performance of BTA and MBTA for
wavelet-based multi-resolution motion estimation algorithms.
For real-time execution, the estimated area for MBTA based
on the minimum number of adders is reduced (relative to
BTA) as the image size, frame rates, and/or search range in-
creases. This is because the reduction in the number of cy-
cles decreases the required number of leaf processors for real
time execution. For the same number of leaf processors, the
relative decrease in execution cycles of MBTA is higher as
the number of leaf processor increases because more parallel
computations are possible. Based on these results, we con-
clude that MBTA is an effective way to improve the process
utilization with low overhead.

7. REFERENCES

[1] K.M. Yang, M.T. Sun, and L. Wu, “A family of vlsi designs for the
motion compensation block matching algorithm,” IEEE Trans. Circuits
Syst., vol. 36, pp. 1317–1325, Oct. 1989.

[2] Y.-S. Jehng, L.-G. Chen, and T.-D. Chiueh, “An efficient and simple vlsi
tree architecture for motion estimation algorithms,” IEEE Trans. Signal
Processing, vol. 41, pp. 889–900, Feb. 1993.

[3] J.H. Lee, K.W. Lim, B.C. Song, and J.B. Ra, “A fast multi-resolution
block matching algorithm and its lsi architecture for low bit-rate video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 1289–
1301, Dec. 2001.

[4] G. Gupta and C. Chakrabarti, “Architectures for hierarchical and other
block matching algorithms,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 5, pp. 477–489, Dec. 1995.

[5] H.M. Jong, L.-G. Chen, and T.-D. Chiueh, “Parallel architectures for
3-step hierarchical search block-matching algorithm,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 4, pp. 407–416, Aug. 1994.

[6] B.-M. Wang, J.-C. Yen, and S. Chang, “Zero waiting-cycle hierarchi-
cal block matching algorithm and its array architecture,” IEEE Trans.
Circuits Syst. Video Technol., vol. 4, pp. 18–28, Feb. 1994.

[7] Y.-Q. Zhang and S. Zafar, “Motion-compensated wavelet transform cod-
ing for color video compression,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 2, pp. 285–296, Sept. 1992.

[8] J. Zan, M.O. Ahmad, and M.N.S. Swamy, “New techniques for multi-
resolution motion estimation,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 12, pp. 793–802, Sept. 2002.

III 963

