LOW POWER CORDIC IP CORE IMPLEMENTATION

Ruiqi Zhang®, Jong Hun Han', Ahmet T. Erdogan"* and Tughrul Arslan'*

'University of Edinburgh, School of Engineering and Electronics
Edinburgh, EH9 3JL, Scotland, United Kingdom
*Institute for System Level Integration, the ALBA Campus
Livingston, EH54 7EG, Scotland, United Kingdom

ABSTRACT

There is a high demand for low power and efficient
implementation of complex arithmetic operations in many Digital
Signal Processing (DSP) algorithms. The CORDIC algorithm is
suitable to be implemented in DSP systems since its calculation for
complex arithmetic is simple and elegant. However, the large
number of iterations involved in CORDIC operation limits its
speed performance seriously and also consumes large power. This
paper presents three CORDIC IP cores which were implemented
using a new CORDIC algorithm. Each of them has one or more
distinctive performances in terms of power, area, speed and
flexibility due to their different architectures.

1. INTRODUCTION

The COordinate Rotation DIgital Computer (CORDIC) algorithm
was first introduced by Volder [1] for the computation of
trigonometric functions, multiplication, division and datatype
conversion, and later generalized by Walther [2]. Implementation
of the algorithm can be considered as an iterative sequence of
additions/subtractions and shift operations. Due to the simplicity of
its involved operations, CORDIC algorithm is very well suitable
for VLSI implementations and is used in various applications such
as digital communication [3], adaptive signal processing [3],
computer graphics [4] and robot control [5].

1.1. Review of CORDIC-based rotators

The general vector rotation transform shown in Equation (1) is
used to compute trigonometric functions. It rotates a plane vector
[x,y 1" by angle 6 to produce a new vector point with coordinates
of [x°,y" 1"
x'=x-cos@—y-sin@ =cosd-(x—y-tan))
y'=y-cos@+x-sinf =cosf-(y+x-tanb)

The conventional CORDIC algorithm for rotation mode
shown in Equation (2) simplifies the operation in Equation (1) by
restricting the rotation angles so that tan @ = 7 2", Equation (2)
shows a basic CORDIC iteration [2, 3, 6], which describes a
rotation of an intermediate plane vector v; = [x; , y; 1" to vy =
[X1 Yin]T~

1-4244-0469-X/06/$20.00 ©2006 IEEE

III - 956

X =K, '(xi_lui'yi’Q'ﬂ.)
Vo =K, -y, + 4, x, '24)

z

@

i1 =2 T H @,

where, a; = tan™ 27’ -Lif z < 0, with i€ {(),...,n —1}
"l+Lif 2,20

K; is a scaling factor and iteration variable z; keeps track of
the unsigned rotation angle «;. The well-known radix 2 system is
used since it avoids using multiplications while implementing
Equation (2). Therefore, a CORDIC iteration can be realized using
shifters and adders/subtracters only. However, for a fixed-point
implementation with data wordlength of W bits, no more than W
CORDIC iterations need to be performed [7]. The large number of
iterations limits its speed performance seriously and also consumes
large power. Secondly, a scale factor operation is necessary in
order to guarantee the final coordinate [x;, y_/-]T has the same norm
as the initial coordinate [xo , yo 17 [6].

The Angle Recording (AR) technique [8] is a useful technique
in the applications where the rotation angles are known in advance
such as lattice-based digital filters [9], FFT or other discrete linear
transformations. Compared to the conventional CORDIC
algorithm, AR technique can reduce the number of CORDIC
iterations and the angle quantization error significantly. However,
AR technique has no restriction on the total number of effective
CORDIC iterations. Various target rotational angles may generate
unequal number of effective iterations which can lead to hardware
problems. Modified Vector Rotational CORDIC (MVR-CORDIC)
algorithm [10] is based on AR technique and has two more
modifications proposed. The first alteration is to allow repeat use
of the eclementary angles because in AR and conventional
CORDIC each micro-rotation angle of a; can be used only once.
The second modification is to combat the aforementioned non-
fixed effective iteration number in AR technique. Extended
Elementary-Angle Set (EEAS)-based CORDIC algorithm [11]
extends the Elementary Angle (a;) Set formed by MVR-CORDIC
algorithm and AR technique so that the quantization angle error
can be reduced. However, the relaxation on the set of elementary
angles is obtained at the expense of double
hardware/computational complexity [11]. Although the increased
complexity can be compensated by the halved maximum iteration
number [11], the overall algorithm complexity is not reduced since
the greedy search algorithm [8] needs to be applied to search for
the closest elementary rotation angles. Besides, the scaling factor
operation is still required in MVR-CORDIC and EEAS-CORIDC
algorithms.

ICASSP 2006

1.2. The new CORDIC algorithm

In this paper, our CORDIC IP cores were implemented based on a
novel CORDIC algorithm presented in [12], but slightly different
in the sense of the approximation for sina as shown in Equation(3)
and the avoidance of scaling factor correction. Compared to the
conventional CORDIC algorithm, the new algorithm adopted in
our designs also reduces the number of CORDIC iterations
significantly. It can be derived from Equation (1). The sine and

cosine functions can be represented using Taylor Series Expansion:

sina=a-C)" - +G) " a’ +...
cosa=1-2)"-a’+@) " at+.~x1-27".a°

The series up to third order are applied to Equation (1) with the
correction of coefficient for sine function, ie. (3!)' is

~ — 74 . 3
ra—2 o (3)

approximated to 2% instead of 2 to achieve a better performance
due to series from fifth order are omitted. The new CORDIC
algorithm can be summarized below:

For ¢ =sin™ 27/ ~27/, with je{23,. . n-1}:

Xigg =X -cos(a/.)—yi 'Sin(a/)
=x,-(1-2"-a})-y,(a;-27"-a})
=x,(1=27) -y, 27 =27

Yin =Vi- COS(O[].) +Xx; - Sin(a]‘)
=y, (1-2" -af)+xi (aq; -2 -a;)
=)Vi (1 -2) +Xx; - (27] - 273]‘74)

Zin =% —Ha

“)

=z M 27
with 0. if z, <0 ,and j e {O,l,...,n—l}A
"1, if 2,20
CORDIC iterations can be skipped (not performed)

when , =0 , ie x,, =x, , y,, =y, - Therefore, power

consumption can be reduced significantly with the reduced number
of CORDIC iterations. Note that j starts with 2 since the
quantization error (a/. =sin™' 27/ = 27/) of apand a, are large.

We applied both the conventional and the new CORDIC
algorithms to angles from 0 to 45° (rather than 0 to 22.5° in [12])
and simulated them in Matlab. For both algorithms, the maximum
iteration number was set to ten. Results of the number of iterations
to find the end point vector value and the error of the end point
vector value at each angle are shown in Figure 1 (a) and (b)
respectively.

11

=
=]

(a)

No. of lterations

New

Conventional

N WA 00O N 0 ©
DM oy o) M s s o

-

(=]

10 40

20 3
Angles (degrees)

1
IS

New
Conventional

o
w
a

o
w

o
I
a

(b)

Error (%)
o
o o o
- o N

o
=)
a

0
0 10

20 0 40
Angles (degrees)

Figure 1. Comparison of conventional and the new CORDIC
algorithm for (a) number of iterations (b) error

Clearly, the number of CORDIC iterations is reduced with the
new CORDIC algorithm and the error is comparable to that of the
conventional CORDIC algorithm. Results of other angles on the
coordinate rather than angles from 0 to 45° can be obtained by
using ‘domain folding’ technique [12].

2. IMPLEMENTATION OF OUR CORDIC IP CORES
2.1. Un-folded architecture with pipeline stages

Figure 2 shows an un-folded CORDIC architecture with four
pipeline stages. Ten “slot” blocks are used to achieve high
calculation precision, i.e. maximum ten CORDIC iterations for one
input data. Using pipeline-register stages in the CORDIC IP core
reduces the critical path of the design. Besides, increasing the level
of pipelining also has the effect of reducing the logic depth and
hence the power contributed due to hazards and critical races is
reduced as well [13].

Input Data Pineline Regist Output Data
Registers ‘peine Registers Registers
Input slot_0 slot_2 slot_4 slot_6 slot_8 Output
Data & & & & & Data
slot_1 slot_3 slot_5 slot_7 slot_9
. . : - Clack
Figure 2. Un-folded CORDIC IP core with four pipelinéStages

Each 'slot' block implements one CORDIC iteration based on
Equation (4) as shown in Figure 3. Block 'x-rotate' and 'y-rotate'
implement x;;; and y;+; in Equation (4) respectively. Block 'angle-
compute' implements z;; and outputs g, are used to steer the

operation of 'x-rotate' and 'y-rotate' blocks. In the new CORDIC
algorithm, the micro-rotation angles are allowed to be used
repeatedly. Besides, only the start rotation angle ¢ needs to be

either stored in a register or obtained from the input, other angles
in the micro-rotation sequence (a/ =277) can be obtained easily

using a shifter. The conventional CORDIC algorithm usually uses
the Table-Look-Up method [3] to obtain each required micro-
rotation angle a;. Compared with the method adopted in the new
CORDIC algorithm, the traditional way is more complex and its
speed performance is also limited by the memory accessing time.

I - 957

¥

' r v 3 y
| b |

Xiri Ziv1 Oy JUj+1 Vi
Figure 3. Block diagram of block 'slot'

2.2. Recursive architecture

Physical capacitance can be kept at a minimum by using less logic,
smaller devices, fewer and shorter wires [4]. Example techniques
for reducing the active area include resource sharing, logic
minimization and gate sizing. We have also implemented the
recursive/folded architecture with the new CORDIC algorithm.
The successive operations are implemented on this architecture as
shown in Figure 4. Control signal 'En' is used to control the
input/recursive and output data of the recursive CORDIC IP core.
The total CORDIC rotation number is set to ten in order to achieve

the same function and precision as the un-folded CORDIC IP cores.

The area of the recursive architecture is evidently much less
than the un-folded CORDIC IP core and therefore the physical
capacitance are minimized. Besides, only one 'slot' block is
switching during each clock cycle, therefore the switching activity
and delay between the input and output registers of this
architecture can also be reduced. This means the clock frequency
is increased while the power consumption is reduced. The penalty
paid is its low throughput since it takes ten clock cycles to process
one input data.

I

Input Output
Input Dat utpu Output
Dat MUX ata Y slot Data
ata — Data
Regs Regs
A
? [T
En Clock

Figure 4. Folded/recursive CORDIC IP core

2.3. Integrated architecture

Beside the un-folded and recursive CORDIC IP cores, we have
also implemented another CORDIC IP core which integrates both
architectures. It is based on the un-folded architecture with four
pipeline stages and uses its input/output registers and one of the
'slot' blocks to realize the recursive architecture as shown in Figure
5. A mode selection input signal has been added to the integrated
core. The core operates with un-folded pipelining architecture
when it is one; otherwise, recursive architecture is selected.
Therefore, this integrated core is more flexible than the pure un-
folded architecture with pipeline registers or pure recursive
architecture.

Input Data
Registers

Enable Registers Output Data

Pipeline Registers
— Registers

mode

v

Output
Data

Input
Data |:>

Clock

Figure 5. Integrated CORDIC IP core
3. IMPLEMENTATION OF CONVENTIONAL
CORDIC IP CORES

In this paper, we have also implemented two CORDIC IP cores
using the conventional CORDIC algorithm which was shown in
Equation (1) with the same unfolded pipelining and recursive
architectures as our CORDIC IP cores respectively (See Figure 2
and Figure 4). The scaling factor K; is given in Equation (5) [4]:
Ki=coso; with je{012,.,n-1} (5
The 'slot' block of the conventional CORDIC IP cores
implements one CORDIC iteration based on Equation (1). Block
'x-rotate' and 'y-rotate' implement x;; and y.; in Equation (1)
respectively. The only difference from Figure 2 is that two outputs
of block 'angle-compute' are 4. | - ¢,,, and i+1 instead of a;. and

J/j+1 respectively. Each micro-rotation angle is allowed to be used
only once. The scaling factor K; and the micro-rotation angle ¢,

are obtained using Table-Look-Up method [3].
4. SIMULATION RESULTS AND POWER ANALYSIS

The CORDIC IP cores were designed with Verilog HDL and
synthesized to UMC 0.18um CMOS standard cell technology
library with Synopsys Design Compiler. Synopsys DesignPower
was used for power analysis after the gate level simulation. Data
wordlength for all cores was set to 32 bits.

4.1. Results of un-folded pipelining CORDIC IP cores

Table I shows the results of unfolded pipelining CORDIC IP cores
using both the conventional and the new CORDIC algorithms
when operated at their maximum speed. Obviously, due to
eliminating the scaling factor correction and hence avoid using
multipliers, our core has its area, power reduced by around 60%
and 88% respectively and speed increased by around 164%
compare to the conventional CORDIC IP core.

Table I. Performances of un-folded pipelining CORDIC IP cores
Area Power Speed
(mm?) (mw) (MHz) Throughputs
Our 0.881 18.152 111 1 data / 9ns
Conventional | 2.184 153.83 42 1 data/ 24ns

4.2. Results of recursive CORDIC IP cores

Results of recursive CORDIC cores using both conventional and
the new CORDIC algorithms when operated at their maximum
speed are shown in Table II. Our core has its area, power reduced

I - 958

by around 51% and 86% respectively and speed increased by
around 117% compare to the conventional core.

Table II. Performances of recursive CORDIC IP cores
Area Power | Speed
(mm?) (mw) (MHz) Throughputs
Our 0.114 3.259 167 1 data / 60ns
Conventional 0.234 23.23 77 1 data / 130ns

4.3. Comparison between our integrated CORDIC IP
core and our other cores

1.5 200 -
. I
e 2150 -
E1 3
@ 2100 |
<0.5 fé
=
0
5 g 0.15
3 S
§A 3 01
SE 2
o= 2 0.5
[} (o]
z 3
o |'E 0

W Tntegrated (pipelining mode)
[Integrated (recursive mode)

W Un-folded pipelining
£l Recursive

Figure 6. Performances of our different CORDIC IP cores

Compared to the pure un-folded pipelining architecture, the
integrated core has the same speed and throughput in pipelining
mode but has the power increased by around 22%. Its throughput
reduced by 50% and the power consumption increased by around
58% compared to the pure recursive architecture. However, this
integrated core provides more flexibility than pure un-folded
pipelining architecture or pure recursive architecture. When
applications require high throughput, pipeline mode of the
integrated core can be selected to achieve the target. Otherwise, the
recursive mode can be chosen to realize low power consumption.
Moreover, for those applications with power management unit, this
integrated CORDIC IP core can be used in pipeline mode for high
throughput and switch to the recursive mode when the system does
not require to have high throughput. Figure 6 shows the
performances of these cores as a summary.

5. CONCLUSION

This paper has presented the implementation of several CORDIC
IP cores with different architectures based on a novel CORDIC
algorithm [12] which eliminates the operation of scaling factor
correction as well as reduces the number of CORDIC iterations
significantly. Compared to the conventional CORDIC IP cores,
those cores implemented using the new algorithm have significant
advantages with both the un-folded pipelining and recursive
architectures in terms of power, area and speed.

The un-folded CORDIC IP core with pipeline stages has the
highest throughput hence is suitable for high throughput
applications where area is not constrained. The recursive core is
suitable for low throughput applications which require low power
and small area. The integrated core provides the flexibility for
choosing either the un-folded pipelining architecture or the
recursive architecture.

REFERENCES

[11 J. E. Volder, “The CORDIC trigonometric computing
technique,” IRE Trans. Electronic Computers, vol. EC-8, no.
3, pp-330-34, Sep. 1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,”
in AFIPS Spring Joint Computer Conference, vol. 38, pp.
379-85, 1971.

[3] H. Dawid, H. Meyr, “Chapter 24 CORDIC Algorithms and
Architectures,” Available from:
http://www.google.com/url?sa=U&start=1&q=http://www-
cad.eecs.berkeley.edu/~newton/Classes/EE290sp99/lectures/e
€290aSp996_1/cordic_chap24.ps&e=9777 [Accessed 8
October 2005]

[4] Tso Bing Juang, Shen Fu Hsiao, “Low power and fast
CORDIC processor for vector rotation,” Circuits and Systems,
1999. 42nd Midwest Symposium, vol. 1, pp. 81 — 83, 8-11
Aug. 1999.

[51 R. G. Harber, X. Hu, J. Li, and S. C. Bass, “The application
of bit-serial CORDIC computational units to the design of
inverse kinematics processors,” in Proc. 1988 IEEE Int. Conf.
Robot. Automat., vol. 2, pp. 1152 — 1157, 1988.

[6] Y. H. Hu, “CORDIC-based VLSI Architectures for Digital
Signal Processing,” IEEE Signal Processing Magazine, pp.
16-35, July 1992.

[71 Y. J. He, Z. H. Cai, and A. Y. Wu, “COST-EFFICIENT
DIGITAL IP DESIGN OF A HIGH-PERFORMANCE EEAS-
CORDIC-BASED VECTOR ROTATOR,” MS. Thesis,
National Central University, Taiwan, June 2001.

[8] Y. H. Hu and S. Naganathan, “An angle recoding method for
CORDIC algorithm implementation,” [EEE Trans.
Computers, vol. 42, pp. 99-102, Jan. 1993.

[9] A. Madisetti, A. Kwentus, and A. J. Willson, “A sine/cosine
direct digital frequency synthesizer using an angle rotation
algorithm,” in JEEE International Solid-State Circuits
Conference, 1995. Digest of Technical Papers. 41st ISSCC,
pp. 262-263, 1995.

[10]C. S. Wu and A. Y. Wu, “Modified vector rotational
CORDIC (MVR-CORDIC) algorithm and architecture,” /[EEE
Trans. Circuits Syst. II, vol. 48, pp. 548-561, June 2001.

[11] A. Y. Wu, C. S. Wu, “A unified view for vector rotational
CORDIC algorithms and architecture based on angle
quantization approach,” IEEE Trans. Circuits Syst., vol.
49, pp. 1442 — 1456, Oct. 2002.

[12] K. Maharatna, A. Troya , S. Banerjee, E. Grass, “Virtually
scaling-free adaptive CORDIC rotator,” Computers and
Digital Techniques, IEE Proceedings, Vol. 151, Issue 6, pp.
448 — 456, 18 Nov. 2004.

[13] A. Chandrakasan, S. Sheng, R. W. Brodersen, “Low-Power
CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 27,
no.4, pp. 472-484, April 1992.

I - 959

