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ABSTRACT

Two principles to produce new possibilities for the radix-2 

Discrete Cosine Transform (DCT) have been presented in 

this paper. One is to employ matrix factorization through 

revealing the intrinsic relationship among several existing 

famous algorithms, which is regarded as an effective guide 

for exploring new algorithms. The other is to make use of 

the orthogonal property of the DCT matrix. As long as the 

recursive kernel of an algorithm is orthogonal, there must be 

a twin fast DCT algorithm of it. Matrix factorization is 

applied through the research and can be used to show how 

data flows and compute the computational complexity easily. 

At the end of this paper, we also present a new fast 

algorithm for DCT. It enjoys the parallel structure which is 

simpler for programming and hardware implementation and 

keeps the same numbers of the additions and multiplications 

as the fastest algorithms. 

1. INTRODUCTION 

DCT has widely been applied in speech and image 

processing [1-3] and fast DCT algorithms, which simplify 

the computational structure and lower the computational 

complexity, have been adopted in most image and video 

coding standards and processing systems. 

There are two categories for computing the fast DCT, 

indirect and direct implementations.  

For indirect computation, DCT is decomposed into 

other fast algorithms with smaller scales, such as DFT, FHT 

[4-5]. These algorithms make use of the mature model in 

programming and hardware implementation, but the 

arithmetic complexity is increased. 

Among the direct implementations, Wang [6] and Chen 

[7] firstly put forward the fast DCT algorithms whose 

computational complexity is the same. Lee proposed a fast 

algorithm of IDCT, but the inversion and division of the 

cosine values give rise to the instability problems. The 

papers [1,8-10] presented the fast algorithms of DCT later, 

which are regarded as the fastest ones commonly applied. 

Their computational complexity is the same, with  
2log

2
N N
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additions and 
2

3
log 1

2
N N N  multiplications.  

In this paper, we reveal the regularity of the existing 

algorithms of fast DCT using matrix factorization, which is 

also a good tool to find the computational complexity. By 

comparison, we learn that the existing algorithms are 

constructed by following the same idea, with which we can 

contrive as many fast DCT algorithms as possible. At the 

same time, the orthogonal property [11-12] can also produce 

the twin fast algorithms, as long as the recursive kernel is 

orthogonal. At last, we present a fast DCT algorithm which 

is different from the algorithms we have seen in the 

literature. Its parallel structure makes it simpler for 

programming and hardware implementation. 

2. THE INTRINSIC REGULARITY 

We denote the input sequence of length N is x(n), [0,N 1]n

and the output sequence is X(k), [0,N 1]k . Thus, the 

Discrete Cosine Transform (DCT) can be defined as:  

1

0

2
( ) ( ) ( ) cos( (2 1) / 2 )

N

n

X k k x n n k N
N

 (1) 

where ( ) 1/ 2k  for k=0, and ( ) 1k  for 1, 1k N .

For most of the existing fast algorithms, the normalized 

form is used for the fast algorithm derivation:  
1

0
( ) ( )cos( (2 1) / 2 )

N

n
X k x n n k N  (2) 

The fast algorithms are all formulated in the recursive 

form to reduce the repetitious operations. We expect to look 

insight into the intrinsic regularity of the existing fast DCT 

methods. Five main algorithms [1-2, 8-10] are listed in 

Table 1 and the matrix factorization not only helps us learn 

the relationship among them, but also shows the 

computational complexity. 

2.1. The General Formula 

From recursive kernels of the five algorithms in Table 1, we 

learn that the algorithms of the length of N are composed of 

4 types of basic matrices: permutation matrices, integer 

coefficient matrices, trigonometric coefficient matrices and 

the block diagonal matrices for the N/2 recursive kernels.
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In Equation (8), we take matrix factorization of Lee’s 

method with the size 4 by 4 for example. 

Table 1 Fast DCT algorithms in matrix form 

Algorithm Recursive Regularity 

[1] Hou II

II

Q

I
H

H

K

I

HN

N

H 0

0
0

0

0

0

2

2                           (3) 

[2] Lee 2

2

2
1 0

0

0

0
L

N

N

L
L P

L

L

Q

I
P                                (4) 

[8] Kok 2

2

2
1

0

0

0

0

0

0
K

KN

N

K
K P

Q

I

K

K

L

I
P                   (5) 

[9] L&H II

II

Q

I

T

T

P

P

L

I

N

N

0

0

0

0

0

0

0

0

2

2                  (6)

[10] C&P II

II

Q

I

C

C

L

I

CN

N

C 0

0

0

0

0

0

2

2                       (7) 
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The four matrices above from left to right are 

respectively integer coefficient matrix, trigonometric 

coefficient matrix, the block diagonal matrix made of two 

recursive kernel matrices for the length of N/2 and 

permutation matrix. 

With the tool of matrix factorization, not only is the 

structure of each fast algorithm clearly shown, but also we 

can deduce one from another, which is critical for us to 

explore new possibilities. And we will deduce Hou’s 

algorithm [1] from Kok’s [8] to illustrate how the general 

formula is produced. 

For Hou’s algorithm, 1 2N H N HDCT P H P  and NDCT  is 

the normalized form of DCT matrix with size N by N. 

NH  is the recursive kernel (3). 1HP  is a bit reversal 

matrix and 2HP  is to split the input data sequence into 2 

parts: the numbers in the even and ordinal positions of the 

original sequence and those in the odd and reverse ordinal 

positions. (Set the first position as 0.) 

The recursive kernel of Kok’s algorithm is NDCT  itself 

and we can rewrite Equation (5) as Equation (9) and (10): 

1 1
1 1 2 2

^
N H H N H HDCT P P K P P                            (9) 

1 1
1 2^

21 2
1 21 1

1 21 2

2

0
0 0 0 0

0 0 0 00

H N H

H H
N K K

K H H KH N H

P K P
I P P I

DCT P P
L P P QP K P

 (10) 

Define 1 1
1 2N H N HH P K P .                          (11) 

Then we have 

21 21 1
1 1 2 2

1 2
2

0 00 0 0
100 2 0 00
2

N
H H

N H K K H
KK H HN

H II P P
H P P P P

QL P PH

                                                                              (12) 

We can demonstrate that: 

11
1 1

1

0 0 0

0 2 0 0

H
H K

K H H

I P I
P P

L P K
              (13) 

2 1
2 2

2

00 0
100 0
2

H
K H

KH H

IP I I I
P P

QP Q I I
  (14) 

Hence 2

2

0
0 0

0 00

N

N
H HN

H
I I I I

H
K QH I I

            (15) 

From the example above, we can summarize the general 

formula for constructing new fast DCT algorithms below.  

The recursive kernel is: 2

2

0

0

N

N
N

DCT

DCT A B
DCT

  (16) 

Define the new recursive kernel NNew  with the length of N:

1 1
N NNew S DCT T

Multiply the matrix 1

N
S  on the left of DCTN  and 1

N
T  on 

the right, then we have: 

21 1

2

0
0 0

0 0 0

N

N
N

New
S T

New S A B T
S New T

 (17) 

This method can produce as many fast DCT algorithms as 

possible. 

2.2. Computational Complexity 

From the viewpoint of matrix factorization, it is easy to 

show how data flows and compute the complexity. Take 

Hou’s algorithm for example. 

The recursive kernel is Formula (3): 

2

2

0
0 0

0 00

N

N
H HN

H
I I I I

H
K QH I I

Suppose that 
2
NH requires

2
NM multiplications and 

2
NA

additions for transformation, we can then find the numbers 

of the operations: 

i) Multiplications: 

The 2nd matrix requires 
2

2 NM  and the 3rd requires 
2
N

multiplications because of  
2
N  diagonal trigonometric 

coefficients, so the number of multiplications for NH  is 

2

2
2N

N
M , which follows 

2

2
2N

N
M MN , with 4 4M .

By mathematical induction, we have 2log
2

N

N
M N .

ii) Additions: 

The first matrix requires 1
2
N additions, because HK  is 

a lower triangular matrix and enjoys the recursive property. 

The second matrix requires 
2

2 NA additions and the last 

matrix requires N additions. So 1

3
2 1

2
N N

N
A A , with 4 9A .

By mathematical induction, we get 2

3
log 1

2
N

N
A N N .
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The intrinsic regularity provides the new possibilities 

for fast DCT algorithms. However, the best one always 

achieves the lowest computational complexity and the 

simplest structure for programming and hardware 

implementation, which is the guide for us to design the new 

algorithms.  

However, not all the methods built in this way require 

the same numbers of additions and multiplications. As long 

as the new matrix appended to the recursive kernel of DCT 

is permutation matrix, which follows that it does not bring 

in any more additions or multiplications, the new algorithms 

achieved in this way can keep the same computational 

complexity as the original one.  

3. THE ORTHOGONAL PROPERTY

DCT matrix enjoys the property of orthogonality, which 

follows that the inverse of the matrix equals to its transpose.  

We can make use of this property to explore more new 

possibilities of fast DCT algorithms. According to the 

structure deduced with matrix factorization, we learn that 

once the recursive kernel is orthogonal, there must be a twin 

fast DCT algorithm of it.  

Suppose the matrix factorization form of the recursive 

kernel of a fast DCT algorithm is: 

2

2

0

0

N

N
N

K

K A B C D
K

. (18)

 By applying the transforms of inverse and transpose to 

the both sides of Equation (18), we have: 
1*

1* 1 1* 2 1* 1*

1*

2

0

0

T
N

T T T T T
N T

N

K

K A B C D
K

 (19) 

As the matrix of NK  is orthogonal, we have 
1*T

N NK K .

Thus, we find the twin fast DCT algorithm of the original 

one as 1* 1* 1* 1*2

2

0

0

N
T T T T

N
N

K

K A B C D
K

(20)

We take Lee’s algorithm as an example. From Equation (4), 

the matrix factorization form of Lee’s recursive kernel is: 

^
2

1 2

2

^
0

0

0 ^
0

N

N L L
L

N

IDCT
I

IDCT P P
Q

IDCT

 (21) 

and
^

[ ] NNIDCT X IDCT , where 

2 1      ( 0)
2

[ ]
2             (n=1,2,...,N-1)

n
N

X

N

 (22) 

(n is the parameter representing the column.) 

So the twin fast DCT algorithm of Lee’s is               (23) 

2

1*21*T 1*
2 2

1 21* 2

2
2

^
^ 0 0

0

^0 0
0

N N T

N L L NT
L N

N

IDCT X
I

IDCT P P X
Q X

IDCT

The matrix LQ , whose size is 4 by 4, is: 

4

1 sec 0 0 0
2 16

310 sec 0 0
2 16

510 0 sec 0
2 16

710 0 0 sec
2 16

LQ
 (24) 

1*

4

2cos 0 0 0
16

30 2cos 0 0
16

50 0 2cos 0
16

70 0 0 2cos
16

T

LQ
 (25) 

LQ  subjects Lee’s algorithm to the stability problems with 

the inversion or division of cosine coefficients. However, in 

the twin algorithm of Lee’s, there are no such problems.  

The above example shows that the property of 

orthogonality not only provides new possibilities for those 

algorithms whose recursive kernels are orthogonal, but also 

improves the existing algorithms. 

4. A NEW ALGORITHM 

In this section, we present a new fast DCT algorithm, which 

is different from the algorithms we have seen in the 

literature and we name it “ algorithm” according to the 

structure of its factor matrices. 

We first define the matrix of recursive kernel NNew , then 

we have 
^

N NDCT P New (26)

and 2
1 2

2

0
0

0 0

N

N
N

New
I

New P P
New Q

(27)

i) 1P  is a permutation matrix, which makes the two halves 

of the input data interlaced. For input sequence x of even 

length N, 1x P x , where ],,...,,,,[ 14321 NN xxxxxxx  and 

],,...,,,,[~
2

2
2

21
2

1 NNNN xxxxxxx .

ii) Q  is a trigonometric matrix. In the DCT matrix for N-

length sequence, the size of Q  is M M , where 
2
NM .

mdiagQM cos ,
N

m
m

2

)12(
, 1...1,0 Mm .

iii) 2P  is an integer coefficient matrix for additions and 

subtractions of the input. For ],,...,,,,[ 14321 NN zzzzzzz , zPz 2
~

give ],...,,,,...,,[~
1

2
1

2
1211

2
1

2
121 NNNNNNNN zzzzzzzzzzzzz .

iv) NP  is the multiplication of 1log2 N  matrices, if the 

length of the input sequence is N. Each factor matrix is 

sparse and the nonzero elements make the matrix look like 

the Greek letter .

Suppose: (log 1) 2 12
...NN N NN

P P P P .

For length 2N, we have

log 1 12

2 log2 2
1 2

log 12 2

0 0
...

00

N N N

N N
N

N N
N N N

P P
P P

PP
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or

1 4

log 12

2 log2 2

log 12 2
1 4 2

0
0

...
0

0

N
N

N N N

N
N N

N

P
P

P P
P

P

(28)

where

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

log 1 0 0 0 0 1 0 0 02

0 0 0 1 0 2 0 0

0 0 0 0 0 0

0 1 0 0 0 0 0 2

N
N

N

P  (29) 

For example:
1 0 0 0

0 1 0 0
14 4 0 0 1 0

0 1 0 2

P P

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 2 0 0 0 0
28 8 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 08

0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 2 0 0 0 0 0 1 0 2

P P P

The analysis of the computational complexity is given 

below. 

i) Multiplications:  

The operations of multiplications for the new fast DCT 

algorithm are from two parts: the recursive kernel and the 

matrix Q. For the N-length sequence, the number of 

multiplications with the recursive kernel is NM1  and that 

with Q is 2NM . So the total number of the multiplications for 

the N-length sequence is 1 2N N NM M M .

From (27), the number of multiplications with 

2

2

0

0

N

N

New

New

 is 
2

2 1NM  and that with 
0

0

I

Q
 is 

2
N . No 

multiplication is needed for 
N

P .So
2

1 2 1
2N N N
NM M M

with 44M .By mathematical induction, we have 

2log
2

N

N
M N .

ii) Additions: 

The operations of additions are also from two parts: the 

recursive kernel and
N

P . For the N-length sequence, the 

number of additions from the recursive kernel is 1NA  and 

that  

from 
N

P  is 2NA . So the number of the additions for the 

N-length sequence is NNN AAA 21 .

From (27), the number of additions with the second 

matrix is
2

2 1NA  and that from 2P  is N. So 
2

1 2 1N NA A N , with 

41 8A . By mathematical induction, we have 21 logNA N N .

From (28), the number of additions in the recursive 

kernel is 
2

2 2 2 1
2NN

N
A A , with 42 1A .By mathematical 

induction, we have 22 log 1
2

N

N
A N N .

So 2

3
1 2 log 1

2
N N N

N
A A A N N .

Table 2 Number of operations of the proposed algorithm 

 N=4 N=8 N=16 N=32 N=64

Multiplication 4 12 32 80 192 

Addition 9 29 81 209 513 

From the deduction, we learn that the proposed algorithm 

requires 2log
2

N
N  multiplications and 

2

3
log 1

2

N
N N

additions for N-length sequence, which are the same as 

other fastest DCT algorithms [1-2,8-10], but the new 

algorithm allows simpler hardware implementation, 

especially, parallel implementation. 
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