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ABSTRACT

New Distributed Arithmetic has been been applied to the 1-D
DCT to produce a low power, high throughput architecture.
In this paper, we apply NEDA to the even-odd decomposition
matrices of the 8 x 8 forward and inverse DCT. We show that,
with the proposed approach, the number of adders required
for the adder array for the forward DCT and the inverse DCT
is fewer than required if NEDA is applied directly to the 8 x 8
DCT and IDCT matrices. This reduction will result in power
savings, without decreasing the throughput. Also, for the in-
verse DCT, the number of adder stages is reduced, resulting
in faster decoding.

1. INTRODUCTION

In [1, 2, 3], the idea of New Distributed Arithmetic or NEDA
is introduced and defined. The DCT is used as an example
of how NEDA can be applied. It is shown that by distribut-
ing the bits of the constant DCT coefficients, it is possible
to perform the DCT operation with just addition operations.
The ROMS that are required in DA techniques and the mul-
tiply operations required in MAC architectures are replaced
by additions. This results in a low power, high throughput
architecture for the DCT. Further, by applying a compression
algorithm which removes the redundant addition operations,
the number of adders was further reduced. In [1, 2, 3], NEDA
is applied to the 8 x 8 DCT/IDCT matrices directly.

In this paper, we propose the application of NEDA to the
even-odd decomposition matrices of the 8 x 8 DCT/IDCT ma-
trices. The even-odd decomposition results in 4 x 4 matrices.
Applying NEDA to these matrices, we will show, reduces the
number of adders required, especially in the case of the in-
verse DCT. We first describe the even-odd decomposition of
the DCT/IDCT. In the section following that, we describe how
NEDA can be applied to the smaller matrices. We examine
the number of adders required and compare with the results
obtained when applying NEDA to the 8 x 8 DCT/IDCT ma-
trix directly and other architectures then summarize our con-
clusions.

2. EVEN-ODD DECOMPOSITION OF THE 8 X 8 DCT
AND IDCT

The even-odd decomposition of the 8 x 8 DCT matrix has
been described previously in [4, 5] and others. Assume that
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Then the even-odd decomposition of the 8 x 8 DCT matrix
can be written as
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X(0), X(1), . . . X(7) are the inputs and Y(0), Y(1), . . .
Y(7) are the transformed values.

The 8 x 8 DCT matrix has been replaced by two 4 x 4
matrices, which can be computed in parallel.

The IDCT is computed as follows:⎡
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Fig. 1. NEDA Architecture with Only Addition Operations[3]
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Y(0), Y(1), . . . Y(7) are the DCT transformed values again
and Z(0), Z(1), . . . Z(7) are the values obtained after the in-
verse transform.

3. APPLYING NEDA TO THE 4 X 4 MATRICES

In NEDA, the bits of the constant DCT coefficients are dis-
tributed, unlike Distributed Arithmetic architectures where the
bits of the input values are fed in a bit-serial manner. Dis-
tributing the DCT coefficients allows us to feed the input val-
ues in parallel and this results in a speedup in the processing.
Also, all multiplication operations are replaced by add and
shift operations. Figure 1 shows the NEDA architecture to
calculate the inner product.

If we choose to represent the signed coefficient values in
13 bits(NEDA internal precision, P), then for each row of the
DCT matrix, we have an equivalent P x M adder array matrix
created where P is the NEDA precision and M is the number
of columns in the DCT array. Since, in the proposed work,
NEDA is being applied to the matrices decomposed into even-
odd rows, and the NEDA precision chosen is 13, there are four
13 x 4 matrices generated.

By examining the four adder matrices, and applying the
compression algorithm of [3], all the possible combinations
of additions can be determined. All redundant addition oper-

ations can be removed to obtain the final number of addition
operations.

3.1. Forward DCT

The adder matrix for row 1 of the DCT matrix in equation 2
is shown below: ⎡
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where row 1 represents the LSB and row 13 represents the
sign-bit.

By examining the four adder matrices obtained from the
matrix in equation 2, we determined that there are 11 unique
addition operations required, as listed in table 1. Similarly,
the 4 x 4 matrix in equation 3, resulted in 15 unique addition
operations, as shown in table 2.

Figure 2 shows the adder matrix butterfly structure for row
1 of the matrix in equation 2.
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Stage Addition combinations
1 h, i,

j, k
2 h + i, h + j,

i + k, j + k,
i + j, k + h

3 h + i + j + k

Table 1. Additions required for the matrix in equation 2.
Here, h = X(0) + X(7), i = X(1) + X(6), j = X(2) + X(5),
k = X(3) + X(4)

Stage Addition combinations
1 p, q, r, s
2 p + q, r + s,

q + s, p + s,
p + s, p + r,

q + r
3 p + q + s, p + q + r,

p + q + r + s,
p + r + s, q + r + s

Table 2. Additions required for the matrix in equation 3.
Here, p = X(0) - X(7), q = X(1) - X(6), r = X(2) - X(5) and s
= X(3) - X(4)

3.2. Inverse DCT

The even-odd decomposition of the inverse DCT also results
in two 4 x 4 matrices as shown in equations 4 and 5. For the
same NEDA internal precision, we determine the number of
additions required. Tables 3 and 4 show the number of add
operations required.

Note that the matrices in equations 3 and 5 are identical.
Note also that for the IDCT only two levels are additions are
required.

4. COMPARISON WITH NEDA APPLIED TO THE
ORIGINAL 8 X 8 DCT AND IDCT MATRICES

In table 5, we show the total number of adders required with
the proposed method and with NEDA applied to the original
8 x 8 DCT/IDCT matrix. It can be seen that in both cases the
number of adders required is fewer and the overall savings is
40%.

Also, for the IDCT we have noted that the stages of ad-
ditions required is reduced by one. This implies that the de-
coder will be faster than with the direct application, which is
an essential requirement for the decoder.

Stage Addition combinations
1 l, m, n, o,

t, u, v
2 n + Y(6), m + Y(6),

v + Y(6), n + Y(4),
m + o

Table 3. Additions required for the matrix in equation 2.
Here, l = Y(4) + Y(6), m = Y(2) + Y(4), n = Y(0) + Y(2),
o = Y(0) + Y(6), t = Y(2) + Y(4), u = Y(2) + Y(6), v = Y(0)
+ Y(4)

Stage Addition combinations
1 w + x, y + z,

x + z, w + z,
w + z, w + y,

x + y
2 w + x + z, w + x + r,

w + x + y + z,
w + y + z, x + y + z

Table 4. Additions required for the matrix in equation 5.
Here, w = Y(1), x = Y(3), y = Y(5), z = Y(7)

5. COMPARISON WITH OTHER ARCHITECTURES

Once the partial products have been generated using NEDA,
they have to be shifted and added together to generate the final
values. To perform these additions, we will need 16 adders (8
for the DCT and 8 for the IDCT). This will result in a total of
57 + 16 = 73 adders. In table 6, we compare our results with
that of other reported 8 x 8 DCT and IDCT architectures.

Fig. 2. Adder matrix butterfly structure for row 1 of matrix of
equation 2. Here, f(-1), f(-3), etc are the partial products.
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Direct NEDA implementation Proposed implementation
DCT 35 26
IDCT 60 31
Overall 95 57
Savings - 40%

Table 5. Number of adders for the DCT and IDCT

Madisseti et al[5] Fanucci et al[6] Proposed implementation
Number of multipliers 14 0 0

Number of adders 32 16 73
Number of ROM words 0 128 0

Table 6. Comparison with other 8 x 8 DCT/IDCT architectures

6. CONCLUSIONS

Using the even-odd decomposition of the 8 x 8 DCT/IDCT
matrix, we obtain four 4 x 4 matrices. We applied NEDA to
these four matrices, using a NEDA internal precision of 13.
This resulted in eight 13 x 8 matrices. As is the case with
NEDA, these matrices represent the addition operations that
have to be performed to generate the DCT or the IDCT of
input values. No multiplication is required, also no ROMs are
required. By applying NEDA to the 4 x 4 matrices, instead of
the 8 x 8 matrix directly, it is determined that there is a 40%
reduction in the number of adders. Also, in the decoder with
the proposed method, the number of adder stages is fewer.
Therefore, applying NEDA to the 4 x 4 matrices results in
smaller area, lower power and higher throughput.
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