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ABSTRACT 

This paper presents a novel VLSI architecture for discrete wavelet 

packet transform (DWPT). By exploiting the in-place nature of the 

DWPT algorithm, this architecture has an efficient pipeline 

structure to implement high-throughput processing. Folded 

architecture for lifting-based wavelet filters is proposed to compute 

wavelet butterflies in different groups simultaneously, at each 

decomposition level. Internal pipelining and by-pass mode are 

employed on each processing element to increase computation 

throughput and provide easy configuration for arbitrary 

decomposition, respectively. According to the comparison results, 

our proposed VLSI architecture is more efficient than previous 

proposed architectures in terms of arithmetic operations, storage 

requirement, and throughput. 

1. INTRODUCTION 

In the last decades, discrete wavelet transform (DWT) [1] has been 

successfully used in a wide range of applications, including 

numerical analysis, signal analysis, image and video coding, 

pattern recognition, statistics, and physics. As a generalization of 

DWT, discrete wavelet packet transform (DWPT) provides good 

temporal and spectral resolutions in arbitrary regions of the time 

and frequency (TF) plane [1-2]. Due to the characteristic of 

flexible TF decomposition, DWPT has also been widely used in 

many applications, especially in speech and audio coding, speech 

enhancement, speech recognition, hearing aid, etc. 

Many VLSI architectures have been proposed for computing 

DWT in the past. However, it is not the case for DWPT. There are 

very few papers on the development of specific VLSI architectures 

for DWPT.  Wu et al [3] designed a programmable processor using 

two-buffer memory system of size 2N and a single MAC 

(multiplier-accumulator) to calculate different subbands. The 

Trenas’ architecture [4] used a single PE (processing element) 

consisting of L multipliers working in parallel and L-1 adders for 

each low-pass and high-pass filters (L is the number of filter taps) 

to increase the computation throughput. Trenas et al [5] also 

proposed a pipelined architecture, applying a series of J PEs 

(MACs) communicated by J memory banks to compute each level 

of the total J levels. A parallel architecture for computing lifting-

based DWPT was presented by Arguello [6]. It consists of a group 

of PEs (MACs) operating in parallel on the data prestored in a 

memory bank. The main drawback of all the existing methods is 

that they all use on-chip memory to store the intermediate 

coefficients and involve intense memory access during the 

computation process, which consume large silicon area and power 

dissipation. They also require dedicated control circuitry to 

generate the correct sequence of read and write addresses. 

In this paper, we present a novel VLSI architecture for 

computing multi-level DWPT. By exploiting the parallelism and 

regularity of the DWPT algorithm, an efficient pipeline 

architecture is proposed to implement high-throughput processing. 

A folded PE for lifting-based wavelet filters is proposed to 

interleave the multiple groups of butterfly computation on a single 

PE at each level. Without on-chip memory requirement and access, 

this architecture is not only area-efficient but also power-efficient.

2. IN-PLACE WAVELET PACKET TRANSFORM 

ALGORITHM 

DWT and DWPT are often implemented by a tree-structure 

filterbank [1]. In the DWT, only the outputs of the low-pass filters 

are further processed at the next decomposition level, while the 

outputs of the high-pass filters remain as the final results. 

However, DWPT allows further processing of both outputs of the 

low-pass filters and those of the high-pass filters at the next level, 

which provides the flexibility to produce arbitrary decomposition 

of the input signal on the TF plane. 

Figure 1 shows a complete 3-level tree for DWPT. At each 

level j (j=0,1,2), each sequence wj, i(n) (i=0,1,…,2j-1) from the 

previous level is fed into low-pass and high-pass filters of h(z) and 

g(z), respectively. From a multiresolution point of view, the output 

from the high-pass filter contains the detailed information of the 

input, while that from the low-pass filter contains the approximated 

information. Thus, at each resolution level, wavelets can 
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Fig. 1.  A complete 3-level tree structure filter bank 
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decompose the signal into approximated and detailed signals at the 

next subsequent level.

The 8-point 3-level DWPT full decomposition can also be 

described by a signal flow graphs (SFG) in Fig. 2. The wavelet 

butterfly in the SFG represents the low-pass and high-pass filters 

with downsamplers in Fig. 1. The first output and the other output 

of each butterfly are the low-pass filter and high-pass filter 

coefficients, respectively. Generally, there are J=log2N butterfly 

stages or levels. The N/2 butterflies at each level are localized in 

groups, where they process the coefficients from the same 

frequency band at the previous level. The number of groups (2j)

doubles at each new level, while the number of butterflies in each 

group (N/2j+1) is reduced by 2. The kth butterfly in the ith group at 

each level is denoted as Gi, k. The notation wj, i(t) is expressing the 

tth (intermediate) wavelet coefficient in the ith group at the jth level.  

While computing J-level direct DWPT, each wavelet butterfly 

produces two new coefficients from two samples read from the 

memory, together with the previous L-2 old samples (L is the 

number of the wavelet filter taps). Since L-2 samples are shared by 

the input sequences to every two consecutive butterflies (eg, G0, 0

and G0, 1 at level 1) in the same group, the shared data can be 

buffered by extra storage provided by the butterflies [4]. Thus, the 

two new coefficients can be stored back into the same memory 

locations occupied by the two input data. Therefore, in-place 

computation is allowed. Observe from Fig. 2 that at each level j,

N/2 butterflies are computed with their input indices at a distance 

of 2j (1,2,4, …,N/2), as they belong to 2j different groups. The 

proposed VLSI architecture presented in the next section employs 

this observation of the in-place DWPT computation. 

3. PROPOSED EFFICEINT VLSI ARCHITECTURE 

In this section, we present an efficient VLSI architecture for 

lifting-based DWPT, similar with the one proposed in [7] to 

implement high-speed FFT operation. Without loss of generality, 

we consider a 3-level Daubechies-4 DWPT with a complete tree in 

this study. 

3.1. Proposed pipeline DDC architecture 

By exploring the in-nature parallelism and regularity in the data 

flow of DWPT as described in Fig. 2, we derived a pipeline VLSI 

architecture called double-path delay commutator (DDC) 

architecture. The DDC architecture has J pipeline stages, of which 

each is corresponding to one of the J levels in the DWPT. It 

consists of J processing elements to compute wavelet butterflies, 

and a series of delay commutators (switches and shift registers) 

which reorder the data coming from the PE in one given stage, so 

as to present them in the right order for the PE in the next stage. 

Figure 3 shows how the PEs are interleaved by the delay 

commutators, as well as the flow of data through the pipeline 

structure. 

      The key idea of the DDC architecture is derived from the 

observation that at each level j, N/2 butterflies are computed with 

their indices at a distance of 2j. This property of the DWPT 

algorithm leads itself to rapid pipelining by appropriate data delay 

and switching in each stage. In this architecture, the input sequence 
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Fig. 3.  DDC pipeline block diagram 
Fig. 2.  Signal flow graphs of 3-level full-decomposition WPT 

Fig. 4.  DDC architecture for 3-level DWPT and its data flow graph 
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is broken into two parallel data streams flowing forward, with 

correct “distance” between data elements entering the PEs by 

proper delays in each pipeline stage. The DDC architecture for a 3-

level full decomposition DWPT is given in Fig. 4. The data flow 

containing input indices at each stage with delay and switching 

illustrates how the pipeline processing of this architecture operates. 

The number of unit delay elements doubles at each subsequent 

stage. The switching frequency of the switch at a given stage is 

always half of that of the switch at the previous stage. By the 

means of appropriate delay and switching as shown in Fig. 4, this 

architecture can process the samples continuously in the exact way 

specified by Fig. 2. Due to its regular structure and its simple 

control, this DDC architecture is a good choice for high-speed, 

high-level DWPT. 

3.2. Proposed folded PE for lifting-based DWPT 

Daubechies and Swedlens [8] proved that any FIR wavelet filter 

can be factored into a cascade of lifting steps. By factoring the 

polyphase matrix for the wavelet filter into a finite product of 

upper and lower triangular matrices and a diagonal normalization 

matrix, the computational complexity required by DWT can be 

reduced by up to 50% [8]. The factorization of the polyphase 

matrix for the Daubechies-4 (D4) wavelet filter is given by: 
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One of the implementation for the lifting-based D4 wavelet 

forward transform in [8] is expressed as follows: 
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Note that we start with a sequence x(2l) and x(2l+1) to represent 

the even and odd indexed samples, respectively. The intermediate 

values during the lifting are denoted as sk(l) and dk(l) (k=1,2,…), 

where l is the time index. The sequence s(l) and d(l) represent low-

pass and high-pass filter coefficients, respectively. From (2), we 

derive the direct implementation of the D4 wavelet forward 

transform as depicted in Fig. 5 (n=1 in this case). The internal 

pipeline registers are ignored in this section. However, it is not 

suitable for the DDC architecture. 

        A folded architecture of the lifting-based D4 wavelet filter is 

proposed with the DDC architecture. At each stage, multiple 

groups of butterfly operations are mapped on one D4 wavelet filter, 

as depicted in Fig. 5. It is observed that any two consecutive 

butterflies in the same group at level j, are separated by 2j-1 

(0,1,3,…,N/2-1) butterflies from the other groups (see Fig. 2). In 

order to interleave the butterfly operations form different groups at 

level j, n=2j unit delay registers can be placed at each unit delay 

element position in the PE. Therefore, signal sl(l) is delayed by 2j

cycles for the next subsequent butterfly computation belonged to 

the same group at level j. For the synchronization with s2(l), d1(l) is 

also delayed by 2j cycles for waiting new d1(l) sample to calculate 

s2(l). At the meanwhile, the PE can still process the next pair of 

inputs to calculate the butterfly from the next group without 

pausing. As an example, the data flow shown in Table I illustrates 

how two groups of butterfly calculations are interleaved on a single 

folded PE at the 2nd level of 3-level D4 DWPT.  

        In general, at each level, only one D4 wavelet filter is folded 

Fig. 5.  Proposed folded architecture of lifting-based D4 wavelet 

filter (n=2j) with internal pipeline stages, where =sqrt(3), =-

sqrt(3)/4, = -(sqrt(3)-2)/4, and = (sqrt(3)+1)/ sqrt(2). Note that 

the intermediate signals s1(l), s2(l) and d1(l) are represented here 

by s1(l), s2(l) and d1(l), respectively. “D” and “R” represent 

delay registers and internal pipeline registers. 

TABLE I

DATA FLOW FOR THE FOLDED D4 PE AT THE 2ND LEVEL IN FIG. 5

Cycle 
Input A 

         B 

C D1,     D2 E

F D3,    D4 

Output   G 

               H 

1 w1,0(0)

w1,0(1) 

s11,0(0) 

d11,0(0) 

2 w1,1(0)

w1,1(1) 

s11,1(0)   s11,0(0)

d11,1(0) d11,0(0)

3 w1,0(2)

w1,0(3) 

s11,0(1) s11,1(0),  s11,0(0) s21,0(0)

d11,0(1) d11,1(0), d11,0(0) 

s1,0(0) ------ w2,0(0)

d1,0(0) ------ w2,1(0)

4 w1,1(2)

w1,1(3)

s11,1(1) s11,0(1), s11,1(0) s21,1(0)

d11,1(1) d11,0(1), d11,1(0) 

s1,1(0) ------ w2,2(0)

d1,1(0) ------ w2,3(0) 

5 s11,1(1), s11,0(1) s21,0(1) 

d11,1(1), d11,0(1) 

s1,0(1) ------ w2,0(1)

d1,0(1) ------ w2,1(1) 

6            s11,1(1) s21,1(1) 

            d11,1(1) 

s1,1(1) ------ w2,2(1)

d1,1(1) ------ w2,3(1)

       Note that the intermediate signals s1(l), s2(l) and d1(l) are represented here by s1j,i(l), s2j,i(l) and d1j,i(l), respectively. j and i

denote the decomposition level and the group, respectively. D1, D2, D3 and D4 represent the signals at the outputs of the unit delay 

registers as specified in Fig. 5. Ignore the pipeline registers in this example. 
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to compute the 2j groups of butterflies by placing n=2j unit delay 

registers into the corresponding unit delay locations. In this way, 

the PE at each level can compute the butterflies exactly specified 

by Fig. 2.  

3.3. Evaluation and implementation 

We proposed a folded architecture of the lifting-based D4 wavelet 

filter suitable for the DDC architecture. As shown in Fig. 5, the 

critical path for the D4 wavelet filter can be reduced from 

(3Tm+4Ta) to (Tm+Ta) by adding 6 extra pipeline registers and 

dividing the PE into 4 pipeline stages. Tm and Ta are time required 

for performing one multiplication and one addition, respectively. 

Thus, the processing time for computing one 3-level D4 DWPT is 

4(Tm+Ta). Generally, the processing time for computing a frame is 

N/2 cycles. Storage registers are 3(N-1) delay registers and 6log2N

internal pipeline registers. 

The comparison of several architectures with our proposed 

architecture is listed in Table II. Our method has the least 

computational complexity due to the lifting-scheme employed. The 

significant increase in arithmetic operations in Arguello’s parallel 

approach [6] comes from the regularization of lifting steps. Our 

scheme has the shortest processing cycles for N-point final 

coefficients. Wu’s single PE method [3] uses two-buffer memory 

system to obtain real-time processing within one frame period, 

which use a high clock frequency rate and consume a large silicon 

area. Trenas’s single-PE scheme [4] has relatively long 

computational time for high-level DWPT. Trenas’s pipeline 

architecture [5] has a longer time when it implements a long-tap 

wavelet filter. Arguello’s approach [6] has a processing time of 

1.5N cycles when it applies J PEs operating in parallel. 

Considering that other architectures need extra memory to buffer 

the data, our proposal is more area-efficient because it only uses 

shift registers and a few pipeline registers. Our architecture is also 

likely to be more energy-efficient not only because of fewer 

arithmetic computations required but also by avoiding memory 

access and data fetching on long wires [9]. 

         In this study, a 3-level D4 DWPT core employing the 

proposed VLSI architecture has been captured by VHDL and the 

functionality was verified by RTL and gate-level simulation. By 

adding a few extra registers, the folded PE in the architecture can 

be configured into normal or by-pass working modes to compute 

any required subtree. Zero-padding method as proved in [9] was 

used to deal with boundary extension issue. To handle the 

overflow problem, the internal wordlength (18-bit) in each PE is 2 

bits more than the input signals. To estimate the area, timing and 

power information for ASIC design, we used Synopsys Design 

Compiler to synthesize the circuits into gate level with standard 

cells from TSMC 0.18 m digital library. The estimated area and 

clock period are 0.549mm2 and 10ns, respectively. The area 

overhead of the registers for the two folded PEs in the 3-level 

DWPT core is only an increase of 1.3% and 2.2% of the total area, 

respectively. It achieves a 53.3% reduction in hardware area with 

comparison to the direct mapped tree-structure architecture for the 

3-level DWPT. The power dissipation for computing an 8-point 

DWPT is 26mW at 100MHz and 1.8V.  

        The proposed DDC architecture with novel folded lifting-

based wavelet filter can be generalized for J-level, N-data lifting-

based DWPT using any L-tap wavelet filters. The PE at each level 

is folded by placing 2j unit delay registers into the corresponding 

unit delay positions. The throughput for computing a frame is N/2

cycles. Storage required are (M+1)(N-1) delay registers and some 

internal pipeline registers, where M is the number of unit delay 

element in the direct implementation of lifting-based wavelet filter.

  4. CONCLUSION 

An efficient pipelined VLSI architecture has been presented for a 

lifting-based discrete wavelet packet transform (DWPT). By 

applying a novel folded and internally pipelined wavelet filter at 

each level, this new architecture can perform pipelining processing 

with a throughput of N/2-cycle for an N-point DWPT. The 

comparison with the other existing architectures shows that the 

proposed scheme is an ideal architecture for VLSI implementation 

of DWPT. 
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TABLE II

COMPARISON OF SEVERAL ARCHITECTURES FOR D4 DWPT 

Author 
Architecture Arithmetic 

operation 

Storage 

(Size) 

Processing 

Cycle 

Wu [3] Single PE 

Conv-based 

14 Memory 

(2N)

-

Trenas [4] Single PE 

Conv-based 

14 Memory 

(N)

JN/2

Trenas [5] Pipeline 

Conv-based 

14 Memory 

(4(N-1)) 

LN=4N

Arguello [6] Parallel

Lifting-based

12 Memory 

(N) 

1.5N

(J  PEs) 

Proposed Pipeline 

Lifting-based 

9 Registers 

(3(N-1)+6J)

N/2
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