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ABSTRACT

This paper presents a novel approach to the finite precision imple-
mentation of the eight point discrete cosine transform (DCT). Two
multiplierless computational schemes of the plane rotation block are
constructed to obtain the transform approximations maintaining or-
thogonality regardless of their coefficient quantization. This is the
main difference with respect to the solutions based on lifting schemes
being developed in recent years, characterized by inherent biorthog-
onality. In our technique, structural orthogonality comes at the cost
of a complexity increase. To keep it at a moderate level, we im-
plement rotations effectively using the denormalized lattice and the
three-value coordinate rotation digital computer (CORDIC) algo-
rithm with double µ-rotations.

1. INTRODUCTION

In recent years, multiplierless approximations of the discrete cosine
transform (DCT) of type II attract a considerable attention. This vari-
ant of the DCT is of great significance for natural image processing,
as it possesses decorrelation abilities close to those of the optimal
Karhunen-Loève transform. Although many DCT algorithms have
appeared since its invention, there is still the need to look for new de-
sign compromises better suited to particular functional expectations
and implementational limitations. For example, in mobile devices
such as digital cameras or cell phones, hardware complexity as well
as power consumption has to be minimized. So, even fixed-point
arithmetic in the full extent is treated as a luxury, to say nothing of
the floating-point one. The use of binary shifts and additions is only
allowed.

The binDCT seems to be the most notable result in this field
[1]. This is the name of the approach derived from known lattice
factorizations for the DCT by replacing plane rotations with lifting
schemes [2]. It offers good performance and design flexibility at ex-
treme simplicity. However, the transforms obtained this way are no
longer orthogonal as biorthogonality is an inherent property of lad-
der structures. This is not a trouble in most applications, but some-
times orthogonal DCT approximations with clear relation between
errors in the signal and transform domains may be preferred.

In this paper, we propose a simple modification of the known
Loeffler’s factorization of the DCT matrix, making it structurally or-
thogonal regardless of coefficient quantization. The related compu-
tational scheme still consists of plane rotations whose number in-
creases, however. Fortunately, multiplierless implementations of the
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resulting lattice are possible, leading to only a moderate efficiency
loss with respect to the binDCT. The first considered approach is
based on the lattice denormalization, whereas the second utilizes the
coordinate rotation digital computer (CORDIC) algorithm.

Notations: Matrices are denoted by upper-case bold-faced char-
acters. IM denotes the M × M identity matrix.

2. STRUCTURALLY LOSSLESS LATTICE FOR DCT

Let us look at the Loeffler’s factorization of the eight point DCT
shown in Fig. 1. The structure is mainly composed from multiplier-
less butterflies. The only nontrivial operations are the three Givens
rotations indicated with the dashed lines. This stage of the schema
corresponds to a block diagonal matrix composed from one identity
and three rotation matrices. The quantization of the rotation coeffi-
cients makes its column norms unequal and hence violates the per-
fect reconstruction property and the losslessness (orthogonality) of
the transform involving finite precision rotations [3].

Fig. 1. Signal flow graph of Loeffler’s factorization [2] of the eight
point DCT.

The solution is to derive an alternative structure for the rota-
tion stage, with components maintaining orthogonality regardless of
their quantization. Knowing the elementary identity R(φ)R(ψ) =
R(φ + ψ) for the rotation matrix

R(φ) =

�
cos φ − sin φ
sin φ cos φ � (1)
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Table 1. The angles used in the discussed factorizations
Angle Value sin(·) cos(·) tan(·) cot(·)

α −3/16π -0.5556 0.8315 -0.6682 -1.4966
β −3/32π -0.2903 0.9569 -0.3033 -3.2966
γ −1/32π -0.0980 0.9952 -0.0985 -10.1532

Σαβγ −5/16π -0.8315 0.5556 -1.4966 -0.6682
Σαβ −9/32π -0.7730 0.6344 -1.2185 -0.8207
Σαγ −7/32π -0.6344 0.7730 -0.8207 -1.2185
Σβγ −1/8π -0.3827 0.9239 -0.4142 -2.4142

we can factorize the rotation stage in the following way

diag {I2,R(2α),R(2β),R(2γ)} =

diag {R(−α),R(α),R(−α),R(−α)}
diag {R(α),R(α),R(α),R(α)}
diag {R(β),R(β),R(β),R(β)}
diag {R(−β),R(−β),R(β),R(−β)}
diag {R(γ),R(γ),R(γ),R(γ)}
diag {R(−γ),R(−γ),R(−γ),R(γ)}

(2)

where α, β and γ are as in Table 1.
Each of the block diagonal matrices at the right side of (2) pre-

serves orthogonality and constant column norm regardless of its rep-
resentation precision, so its cascade is also orthogonal. However, the
number of the rotations in this simple solution is huge, as it equals
24. Fortunately, because the order of a rotation product is insignifi-
cant, we can easily derive the four subsequent factorizations:

diag {I2,R(2α),R(2β),R(2γ)} =

diag {R(−α),R(α),R(−α),R(−α)}
diag {R(Σαβγ),R(Σαβγ),R(Σαβγ),R(Σαβγ)}
diag {R(−β),R(−β),R(β),R(−β)}
diag {R(−γ),R(−γ),R(−γ),R(γ)}

(3)

diag {I2,R(2α),R(2β),R(2γ)} =

diag {R(β),R(−β),R(β),R(β)}
diag {R(−Σαβ),R(Σαβ),R(Σαβ),R(−Σαβ)}
diag {R(Σαγ),R(Σαγ),R(−Σαγ),R(Σαγ)})
diag {R(−γ),R(−γ),R(γ),R(γ)}

(4)

diag {I2,R(2α),R(2β),R(2γ)} =

diag {R(α),R(α),R(−α),R(α)}
diag {R(−Σαβ),R(Σαβ),R(Σαβ),R(−Σαβ)}
diag {R(Σβγ),R(−Σβγ),R(Σβγ),R(Σβγ)}
diag {R(−γ),R(γ),R(−γ),R(γ)}

(5)

diag {I2,R(2α),R(2β),R(2γ)} =

diag {R(α),R(α),R(α),R(−α)}
diag {R(−Σαγ),R(Σαγ),R(−Σαγ),R(Σαγ)}
diag {R(Σβγ),R(−Σβγ),R(Σβγ),R(Σβγ)}
diag {R(−β),R(β),R(β),R(−β)}

(6)

based on the angles being the sums of α, β, and γ, shown in Ta-
ble 1 too. These constructions require only 16 rotations each but still
possess structural losslessness. They seem to be tightly connected
to the factorizations of 8× 8 block diagonal orthogonal matrices re-
ported in [4, 5], based on quaternionic approach. However, for the

sake of brevity, we omit this relation in our discussion. Much more
interesting for us is how to implement particular rotations and their
sequences in an efficient manner, using only shifts and additions.

3. ”DENORMALIZED” IMPLEMENTATION

3.1. Idea

This classical approach to efficient lattice implementations was pro-
posed in [6]. It was termed ”denormalized” as it consists in the ex-
traction of the factors from the branches of the rotation butterfly,
explained in Fig. 2. The selection of its particular variant is aimed
at the reduction of the dynamic range of the coefficient remaining
inside the lattice. Given a rotation sequence, we can merge all ex-
tracted factors into a single one (referred to as ζ in the further dis-
cussion) placed on the output. Thus, the number of the required
multiplications decreases about two times.

Fig. 2. Denormalized lattices for Givens rotation.

The structure for the rotation stage obtained this way starting
with (4) is shown in Fig. 3. ζ = cos β sin Σαβ cosΣαγ cos γ in this
case, and it can be quantized without orthogonality violation.

Fig. 3. Structurally lossless rotation stage.

3.2. Design example

Table 2 contains exemplary coefficients for the lattice in Fig. 3.
They are represented using the ”canonic-signed-digit” (CSD) code
to facilitate an efficient implementation. Two DCT approximations
differing in tan β are considered. For its value −9/32, the com-
plete rotation stage requires 40 shifts and 56 additions. The resulting
transform is characterized by the coding gain 8.8037 dB (calculated
for the AR(1) input model; 8.8259 dB for the original DCT), and its
magnitude responses are shown in Fig. 4. It is evident that the DC
leakage to 5th band is nonzero though the attenuation 50 dB seems
to be sufficient to neglect its effect. The reduction of the leakage
depends on the approximation of the identity

R(β)R(−Σαβ)R(Σαγ)R(−γ) = cI2 c = const. (7)
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Table 2. The multiplierless lattice coefficients
Function Rational CSD Number of

approx. expansion shifts adds

tan β −9/32 −2−2
− 2−5 2 2

tan β −71/256 −2−2
− 2−5 + 2−8 3 3

cot Σαβ −7/8 −1 + 2−3 1 2
tan Σαγ −3/4 −1 + 2−2 1 2
tan γ −1/16 −2−4 1 1

At more accurate tan β ≈ −71/256, with eights operations more
and significantly enlarged wordlength, the attenuation at the DC fre-
quency in the 5th band response is 70 dB and the transform coding
gain increases to 8.8057 dB. It should be noted that the normaliza-
tion factor ζ has the value 0.5774 being unexpectedly very close to
1/

√
3. It is normally coalesced with that from the inverse transform

to obtain a rational number, and incorporated into the quantization
process what leads to the so-called scaled DCT [7, 2].
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Fig. 4. Magnitude response of DCT approximation based on coeffi-
cients in Table 2 (tan β ≈ −9/32).

4. CORDIC IMPLEMENTATION

4.1. CORDIC algorithm

The CORDIC is a robust algorithm for computations based on or-
thogonal rotations [8, 7, 9]. Its essential variant consists in the de-
composition of a given rotation in terms of the elementary rotations

R(α) ≈
W�

k=0

1

Kk

�
1 −σk2−k

σk2−k 1 � (8)

for the wordlength W , with the scale factor

Kk = � 1 + σ2
k2−2k (9)

and σ2
k ∈ {±1}. This scheme is easy to implement in hardware due

to its simplicity and regular layout. However, there are two disad-
vantages. Firstly, sometimes it is more efficient and accurate to omit
certain rotations, e.g. to allow σ2

k ∈ {−1, 0, 1} [8]. Secondly, an
irrational scale factor makes the normalization difficult under finite
precision. To cope with this problem, the CORDIC based on double
µ-rotations

R(α) ≈
W�

k=0

1

K2
k

�
1 −σk2−k

σk2−k 1 � 2

(10)

has been cosidered in [9], together with the efficient scaling proce-
dure

1

K2
k

= (1 − 2−2k)

log2�W/2k��
s=1

(1 + 2−2s+1k) (11)

Table 3. The nonzero CORDIC parameters
Angle σ0 σ1 σ2 σ3 σ4 σ5

α -1 -1
β -1 -1
γ -1 -1

based on shifts and additions.
We aim to obtain CORDIC implementation of the DCT, exploit-

ing the above mentioned improvements. The factorization (2) of the
rotation stage allows the direct utilization of double µ-rotations.

4.2. Design example

Assuming the approximation of the rotations summarized in Table 3,
we have the structure depicted in Fig. 5. As each pair of µ-rotations
requires different scaling and a certain error in (11) is unavoidable,
we decided to equalize the norm in each path from the input to the
output, to have only one scaling factor ζ = 1/(K2

1K2
2K2

3K2
4K2

5 ).
The error related to such a scaling affects whole structure uniformly
and hence does not touch its orthogonality.

The norm equalization is performed by placing the multipliers
by K2

k in parallel to the corresponding rotation combination. In fact
such a multiplier is implemented with only one shift and addition.
Thus, the entire considered rotation stage requires 52 these opera-
tions. ζ can be realized using (11) — some factors in the product of
such expressions can be combined to simplify the circuit.

Fig. 5. The CORDIC-based rotation stage in Fig. 1.

The coding gain of such an approximation of the DCT reaches
8.8217 dB. The DC leakage is eliminated structurally. The corre-
sponding frequency responses are shown in Fig. 6.
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Fig. 6. Magnitude response of DCT approximation based on the
CORDIC algorithm.
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It should be noted, that the CORDIC-based approach to the DCT
implementation is not a new idea [7]. However, neither utilization of
double µ-rotations nor orthogonality seems to be considered.

5. FIXED POINT SIMULATIONS

To obtain more insights into the properties of the considered DCT
algorithms, we modeled them using MATLAB/Simulink to simulate
finite precision arithmetic. Then we evaluated the loss of the selec-
tivity and the orthogonality of the corresponding filter banks. The
channel magnitude response is calculated as the square root of the
ratio between the power spectra of the subband and the input. In
turn, the power spectra are estimated by averaging the periodograms
of nonoverlapping and windowed random signal segments (Welch
method [10]). The channel magnitude responses obtained this way
for 8-bit wordlength are shown in Fig. 7. The sums of their squares
are depicted in Fig. 8. For an orthogonal system, such a sum (equiv-
alent to the distortion transfer function) is constant independently of
frequency — the responses are power complementary [3].

For the binDCT of type L3 [2], the orthogonality loss is evi-
dent, though it is characterized by a weak influence of rounding
errors. The denormalized lattice is also robust in this aspect, but
its responses are exactly power complementary. The CORDIC ap-
proach seems to be the worst option — due to high roundoff error
and slight orthogonality loss. This is the result of a careless selection
of wordlength, disallowing the precise multiplication by K2

5 , and can
be eliminated by the enhancement of the used binary representation.
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Fig. 7. Magnitude responses obtained using lattice (a), CORDIC (b)
and binDCT-L3 (c).

6. CONCLUSIONS

An alternative approach to the finite precision DCT implementation
is presented, focused on a structural orthogonality imposition. Two
possible multiplierless lattice realizations are considered to reduce
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Fig. 8. Sum of squared magnitude responses using lattice (a),
CORDIC (b) and binDCT-L3 (c).

its computational complexity. The forthcoming works comprise a
deeper analysis and further optimization of the circuits as well as
their practical applications in image and video compression systems.
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