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ABSTRACT

In this paper, we present a hardware architecture for a Sampling Im-

portance Resampling Filter (SIRF) applied to systems with multi-

ple interacting models. This filter outperforms traditional filters in

practical scenarios due to superior abilities of the SIRFs in deal-

ing with nonlinear and/or non-Gaussian models. Compared to ex-

isting approaches, our method does not require knowledge of model

transition probabilities and keeps a constant number of particles per

model at all times. This allows for a regular hardware structure

with deterministic execution time. A highly scalable, parallel archi-

tecture consisting of distributed processing elements and a central

unit is described. We propose an interconnection scheme and data

exchange protocol using the concept of distributed resampling that

greatly speeds up filter execution and drastically reduces the required

interconnect to a single bus without causing any communication bot-

tleneck. The proposed architecture is evaluated on a Xilinx FPGA

platform for a multiple model target tracking application and its ef-

ficiency and scalability is shown.

1. INTRODUCTION
Frequently, several systems require a multiple model formulation of

the state dynamics (ex. position of a maneuvering target). In prac-

tice these models may be nonlinear and non-Gaussian. The interact-

ing multiple model (IMM) methods have been extensively applied

for state estimation in such scenarios [1]. These methods incorpo-

rate a bank of Kalman Filters or Extended Kalman Filters (EKFs)

each tuned to a particular model, and use model transition probabil-

ities to bring about interaction between individual filters and com-

bine estimates. In case of nonlinear models, the traditional IMM

filters perform poorly due to the shortcomings of the EKF. Alterna-

tive approaches for nonlinear and non-Gaussian IMMs include the

unscented Kalman filter (UKF), [2], and the regularized particle fil-

ter (RPF) [3]. Some practical applications of the IMM filtering ap-

proach are: tracking of maneuvering mobile station in CDMA envi-

ronment [4] and tracking of maneuvering vehicles for adaptive cruise

control [2].

The SIRF is a Monte Carlo method for filtering in dynamic

state space (DSS) models involving nonlinear functions and non-

Gaussian noise [5]. SIRFs estimate the state based on the princi-

ple of Importance Sampling (IS), whereby, samples (particles) are

drawn from a known density (Sample step) and assigned appropriate

weights based on received observations using IS rules (Importance

step). This weighted set of particles represents the posterior den-

sity of the state and is used to find various estimates of the state like

MMSE or MAP. The posterior is then recursively updated in time as

the observations become available. Another operation called Resam-

pling is incorporated into this scheme to prevent weight degeneracy
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which causes the weights of many particles to be negligible after a

few time instants. Resampling replicates those particles with large

weights and discards those particles with small weights in a system-

atic manner. The above mentioned steps of sampling, importance

computation, output (estimate) calculation and resampling form the

traditional SIRF. The main advantage of the SIRF is that it can han-

dle nonlinear and non-Gaussian states much more effectively than

other traditional filters like the EKF and the UKF.

In this paper, we develop a parallel architecture for the efficient

hardware implementation of the SIRF algorithm applied to systems

with multiple interacting models thus enabling its use for real time

processing. An SIRF based approach for MM systems has been pre-

viously presented in [6]. Compared to this method, our algorithm

does not require knowledge of the model transition probabilities and

keeps a constant number of particles per model at all times. This

leads to a regular pipelined hardware structure and efficient inter-

connection scheme with negligible communication bottleneck. The

architecture consists of distributed processing elements (PEs) and a

central unit (CU). We apply the concept of distributed resampling [7]

which drastically reduces the data exchange requirement between

the PEs and the CU and also parallelizes the inherently sequential

resampling process. This significantly reduces the resampling time

thus increasing the speed of the filter. The required interconnect is

reduced to a single bus and the communication bottleneck is elim-

inated by using a mechanism based on distributed particle storage

and index addressing to bring about the data exchange. This archi-

tecture is highly scalable and also eliminates memory requirement

in the CU. When evaluated on an FPGA platform, this architecture

achieved speeds 100 times faster than a DSP implementation.

2. THE SIR MM ALGORITHM
The multiple model system is described using multiple DSS models

as

xn = fk
n(xn−1,qn−1) (1)

zn = hk
n(xn,vn) (2)

where xn describes the dynamically evolving state of the system at

time n, fk
n is the possibly nonlinear model dependent system tran-

sition function, k = 1, 2...K represents the model index, where K
is the total number of models used. The symbol zn represents the

observations of the system, hk
n is the possibly nonlinear model de-

pendent observation function, and qn and vn are state and observa-

tion noise processes, respectively, that may be non-Gaussian. Un-

like other multiple model filtering approaches, we do not consider a

model for the transition probabilities. The prior model probabilities

and transition probabilities are respectively assumed constant while

the posterior model probabilities are accounted for implicitly in the

algorithm as shall be seen. The input to the filter at every sampling
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instant is the observation zn. The goal of the filter is to estimate the

state using this observation and the multiple model state description.

In our algorithm, the traditional SIRF is extended to multiple

models. In the sample step a set of particles is drawn from each

model. This is represented as
n
x

(i),(k)
n

oNs

i=1
where Ns is the num-

ber of particles used in each model and k is the model index num-

ber. The importance step in each model assigns a weight to each

of its particles based on the received observations. Thus after these

steps, we have a weighted set of particles from each model k, repre-

sented as
n“

x
(i),(k)
n , w

(i),(k)
n

”oNs

i=1
. This set represents the individ-

ual model conditioned approximation to the state posterior.

We use the resampling step not only to avoid the generic weight

degeneracy, but also to combine the weighted sets of particles from

all the models. This resampled set of particles represents the com-

bined posterior of the state over all models and can be used to com-

pute the desired estimate. The resampling operation selects Ns of

the total K × Ns sampled particles. This resampled set is denoted

by
nex(i)

n

oNs

i=1
, where the particles are chosen such that

Pr(ex(i)
n = x(j),(k)

n ) = w(j),(k)
n (3)

where i, j = 1 to Ns and k = 1 to K. The weight of each resam-

pled particle is 1/Ns [5]. The posterior probability of each model is

accounted for implicitly in this resampling step by the fact that the

model with the largest weight will contribute the highest number of

particles to the combined resampled set and hence to the final esti-

mate. This combined set of Ns particles is then propagated to the

sample step of each model to determine the sampled particles of the

next time instant using (1). This brings about model interaction and

makes the algorithm robust as the space of each model is explored at

every instant.

The above algorithm was applied to the problem of tracking a

moving vehicle with two models described as in [2]. A constant ve-

locity model describes straight line motion and an almost-constant

speed turn model covers vehicle maneuvers like U turns and rotaries.

The results of the tracking, with Ns = 1000 particles per model, av-

eraged over 100 Monte Carlo runs are presented in Fig. 1. The above

example with Ns = 1000 and K = 2, when evaluated on a DSP plat-

form (TI-TMS320C67x), gave a processing speed of about 200Hz.

Hence design of efficient hardware is essential to meet real time pro-

cessing requirements, particularly in situations where a larger K and

larger Ns are needed.
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Fig. 1. Performance of the algorithm on a tracking example.

3. PARALLEL ARCHITECTURE FRAMEWORK
Fig. 2 shows a basic parallel framework for the implementation of

the multiple model SIRF algorithm along with operations assigned

PE 1 (Model 1)
-Sampling

-Importance

Model 1
estimate

PE K (Model K)
-Sampling

-Importance

Model K
estimate

PE 2(Model 2)
-Sampling

-Importance

Model 2
estimate

PE 3(Model 3)
-Sampling

-Importance

Model 3
estimate

CU
-Resampling
-Combination

Combined
resampled
set

Combined
Resampled
set

Fig. 2. Parallel architecture model for the algorithm.

to each unit. The PEs are tuned to different models and operate in

parallel while the CU performs resampling and computes the esti-

mate. Resampling is a centralized operation which operates on par-

ticles and weights from all the models (PEs). All traditional resam-

pling algorithms are inherently sequential in operation. Accordingly,

use of the traditional systematic resampling [5] would require all the

K × Ns particles (Ns per PE) along with their weights to be sent to

and stored in the CU. Resampling would then need to systematically

choose Ns out of the total K ×Ns particles. From results presented

in [8], this resampling would take ((K + 1) · Ns − 1) cycles. Ta-

ble 1 summarizes the amount of communication needed between the

PEs and the CU if centralized resampling is used, where bp and bw

are the fixed point bit widths used for representing the particles and

weights respectively.

Data Transferred Direction of Transfer Amount (bits)

Weights From each PE to CU K × Ns × bw

Sampled Particles From each PE to CU K × Ns × bp

Resampled Particles From CU to each PE Ns × bp

Table 1. Data exchange requirement between PEs and CU if cen-

tralized resampling is used.

It is reasonable to assume bp and bw to be of the order of 16

and Ns of the order of 1000 or more. Thus the traditional cen-

tralized resampling approach has a very high data communication

requirement, introduces a high resampling latency and also poses a

significant memory requirement in the CU. This affects the scala-

bility of the architecture since increasing the number of models or

PEs K, increases the data exchange requirement, resampling time

and CU memory requirement by a factor of Ns. This scheme also

poses a serious bottleneck since resampling cannot start until all par-

ticles and weights are sent to the CU and the sample step of the next

instant cannot start till the resampling step of the previous instant,

which requires (K + 1) · Ns − 1 cycles, is completed.

To alleviate the problems of centralized resampling, we use the

method of distributed resampling introduced for the single model

distributed SIRF in [7]. The amount that each model (PE) con-

tributes to the set of Ns resampled particles depends upon the weight

of the PE, i.e., sum of weights of all particles in that PE. Distributed

resampling makes use of this fact to split up resampling into a two

stage hierarchical process. Initially, only the sum of weights of all
particles of each PE, is sent to the CU. This is denoted by W k for

PEk. The CU then performs the first stage of resampling which de-

termines the number of particles that each PE will contribute to the

final resampled set based on its sum of weights. We call this value

as the PE (model) replication factor and denote it as Rk for PEk

where
PK

k=1 Rk = Ns and 0 ≤ Rk ≤ Ns. This operation is done

using the method of Residual Systematic Resampling (RSR). An ef-

ficient hardware implementation of RSR is presented in [8]. This

computation requires K cycles.

The Rk values are then sent to the respective PEs. Each PEk
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performs resampling on its Ns sampled particles to produce Rk par-

ticles simultaneously with the other PEs. This resampling is still

sequential, but has reduced execution time since only Ns particles

are processed simultaneously in each PE as opposed to K × Ns in

the CU if centralized resampling is performed. In distributed resam-

pling, the communication between PEs and the CU consists only of

K values of the sum of weights W k and K replication factors Rk.

This is a great reduction in comparison to the values presented in

Table 1. The sample step in each PE requires all the Ns resampled

particles of the previous time instant. Hence each PEk needs to

obtain Ns − Rk particles from other PEs. We shall see in the next

sections how this exchange is carried out efficiently without causing

a communication bottleneck.

4. ARCHITECTURE DESCRIPTION

Sample ResampleImportance

Replicated
Indexes
(MEM1 )

Discarded
Indexes
(FIFO)

Read
Port

Write
Port

PMEM

addr

addr

data

Controls generated
by both PEs and CU

Particles from
other PEs

Particles to
other PEs

To Bus Interfaces

Sum of
weights
to CU

Replication Factors
from CU

Sync. Controls

Fig. 3. Architecture of a single PE.

• Structure a of PE: Fig. 3 shows the basic architecture of each

PE based on the memory schemes proposed in [8]. The sample step

produces Ns particles in each PE using the combined resampled par-

ticles from the previous time instant. Weights of the particles are

calculated by the importance step and the sum of weights W k is

sent to the CU. After receiving the number Rk from the CU resam-

pling is done in parallel in each PE to determine which Rk of the

Ns particles of PEk will be present in the final resampled set. The

process returns the addresses or indexes of the Rk resampled parti-

cles in PMEM . They are written to the replicated index memory

MEM1 while the other indexes are written to the discarded index

FIFO. The discarded particles indexes are used to appropriately write

the sampled particles to PMEM [8].

•Inter-PE Communication: The sample step requires the prop-

agation of resampled particles in each PE to every other PE. Often,

only one of the models contributes significantly to the resampled set.

Due to this, having a dedicated bus between each pair of PEs would

lead to most of the interconnect being idle. The utilization is maxi-

mized when a single bus is used for the particle exchange. Particle

distribution is then sequential and takes Ns × t cycles where t is the

number of cycles needed to transfer a word (particle) over the bus.

This depends upon the bus latency and the width of the bus Bw with

respect to the bp, the bit width used for representation of particles.

Using the architecture of Fig. 3, this particle distribution is pipelined

with the sample and importance steps. Hence a communication bot-

tleneck can be completely avoided if t = 1 cycle and Bw = bp, i.e.,

one particle is available at the input of the sample step of each PE

per cycle. If t > 1 cycle, then a larger bus width will need to be

chosen to prevent the bottleneck. For our FPGA implementation we

design with t = 1 and Bw = bp.

•Communication between the PEs and the CU: The required

communication between the PEs and the CU in each recursion is

only 2 · K words, K values of W k from PEs to CU and K values

of Rk from CU to PEs. Typical values of K are between 2− 6. The

RSR process in the CU has a computation time of K cycles. The

PE-CU data exchange does not overlap with inter-PE communica-

tion. Hence we use the same bus of width bp, for this communica-

tion . Though fixed point widths for various quantities depend upon

the application, we have arrived at the following general relations by

applying the statistical analysis method of [9]

bp ≈ bw (4)

bW k ≈ 2 × bw = 2 × bp (5)

bRk = log2Ns << bW k (6)

where bW k , bw and bRk are the widths used in the fixed point repre-

sentation of the sum of weights, individual weights and the replica-

tion factors, respectively.

Using a bus of width bp causes a communication latency of

K� b
W k

bp
� in sending the sum of weights to the CU and a latency

of K cycles in obtaining the replication factors. Due to the small

value of K, this latency is of the order of 15 − 20 cycles which is

negligible compared to the overall execution time of the filter.

• Arbitration: The values of Rk are determined in the CU and

these values decide the number of cycles that each PE should have

write access to the bus. The CU incorporates a controller which con-

sists of a counter and comparators to generate control signals that

grant access of the bus to each PEk for Rk cycles. During this time

the sample step of this PEk reads particles from the local memory

while the sample step of the other PEs get their input particles over

the bus. Due to the pipelining of the particle distribution with sam-

ple and importance steps, the time from the start of a recursion till all

the weights of particles within a PE are calculated is Ns +L1 cycles

where L1 is the start up latency of the PE datapath. The resampling

in the PE takes 2 × Ns − 1 cycles if systematic resampling is used.

This information is incorporated into the central controller to gener-

ate control signals for PE to CU transfer of sum of weights and CU

to PE transfer of replication factors.

5. EVALUATION
Part. distribution

Sample and Imp.

Send particles and weights to CU

Centralized resampling

Part. distribution

Sample and Imp.

Ns + L1 Ns (K+1) Ns

Overall latency = ( K+3) N s cycles

(a) Execution time using centralized resampling.
Part. distribution

Sample and Imp.

Wk to CU

CU RSR

Part. distribution

Distributed Resampling in PEs .

Ns + L1

Overall latency = 2N s + 4K + L1 cycles

Rk to PE

2K K NsK

Sample and Imp.

(b) Execution time of the proposed architecture.

Fig. 4. Timing of multiple model SIRF.

The proposed architecture drastically reduces the communica-

tion bottleneck and resampling time thus greatly speeding up the

filter execution. Fig. 4 compares the timings of the filters using a

centralized resampling approach and the proposed architecture with

distributed resampling. The overall execution time of the filter for

the two cases is given by

Tcent = (K + 3) · Ns + L1 (cycles) (7)

Tdist = 2 · Ns + 4 · K + L1 (cycles). (8)

III ­ 922



Sample

Use pointers
to replicated
particles

Local Resampled
Particles
of instant ' n-1'

Sampled Particles
of instant ' n'

ResampleImport.

Replicated
Indexes
(MEM1 )

Discarded
Indexes
(FIFO)

Read
Port

Write
Port

PMEM

addr

addr

data

Resampled particles
of instant ' n-1' from
other PEs

R
es

am
pl

ed
pa

rti
cl

es
to

ot
he

r
PE

s Sum of
weights to
CU (W k) Replication

Factor from
CU.

Sample

Local
Resampled
Particles
of instant ' n-1'

Sampled Particles
of instant ' n'

ResampleImport.

Replicated
Indexes
(MEM1 )

Discarded
Indexes
(FIFO)

Read
Port

Write
Port

PMEM

addr

addr

data

Resampled particles
of instant ' n-1' from
other PEs

R
es

am
pl

ed
pa

rti
cl

es
to

ot
he

r
PE

s Sum of
weights to
CU (W k) Replication

Factor from
CU.

Memory
for W K

Sum

Replication
Factors

Rk

Values
of Rk and

other cycle
counts

Counters

Control generation

cw 1

I0 I1

cr1

O0 O1

I0

I1

cs 1

From
Bus

To
Bus

cg 1 cg 2

cr2
cw 2

I0 I1 O0 O1

From
Bus

To
Bus

BUSBUS

cs 2

Use pointers
to replicated
particles

clk

reset

cg 1

BUS

cr 2

cr 1

cs 2

cs 1

cw 2

cw 1

cg 2

zzz...zzz

x

x

x

x

x

R1 words- PE 1

N s

Bus and control status during inter PE exchange

x

x0

0

0

0

0

0

0

1

1

1

1

1

0
1

R2 words - PE 2

zzz...zzz

x

x

x

x

x

cc

clk

cg 1

BUS

cr 2

cr 1

cs 2

cs 1

cw 2

cw 2

cg 2

cc

1

11

11

1

1

1

1

0

0

0

x

x

x

x

x

x

x

x

x

x

x

x

1

Send W 1 and W 2

to CU
Send R 1 and R 2

to PEs

Bus and control status during PE to CU exchange

zzz...zzzzzz...zzz

Fig. 5. Full Architecture with 2 PEs.

These expressions show that the architecture is highly scalable in

that, increase in execution time by inclusion of more PEs and more

particles per PE, is extremely small as compared to a centralized

resampling approach.

Fig 5 shows the overall architecture of the filter with two PEs

along with timing diagrams showing the status of the bus and asso-

ciated controls during the inter-PE and CU-PE communication. On

the FPGA platform the single bus is realized using macros which

utilize long routing lines and tri-state buffers. Using the above archi-

tecture, the MM SIRF was implemented on a Xilinx Virtex II device

for the tracking application [2] discussed in Section 2 with K = 2

and Ns = 1000. All the memory required in the PEs is realized us-

ing block RAMs and the necessary trigonometric and exponential

functions are implemented using CORDIC units.

Unit Slice Slice.Reg LUT B. RAM Mult TBUF

PE1 2,807 4,133 3,873 17 7 52

PE2 4,597 6,872 5,423 17 10 52

CU 520 550 610 0 1 10

Table 2. Resource Utilization on a XC2V4000 device.

TABLE 2 summarizes the resource utilization of various units

on the target platform. Post place and route timing analysis deter-

mines that the maximum clock rate for this design is 60MHz. This

means that for our example, the filter can process input observations

at 20KHz.

6. CONCLUSION
In this paper, we have developed a parallel architecture for efficient

hardware implementation of an SIRF algorithm with multiple mod-

els. Compared to traditional approaches, this algorithm does not

require knowledge of transition probabilities and handles nonlin-

ear and non-Gaussian models more efficiently. The proposed ar-

chitecture is based on a distributed resampling mechanism which

greatly speeds up resampling and drastically reduces the data com-

munication requirement. An efficient communication scheme is pro-

posed which minimizes communication bottleneck and interconnect

requirement. The architecture was used to implement the MM SIRF

for a practical tracking example on the Xilinx Virtex II platform.

The filter achieved speeds of up to 20KHz which is about 100 times

faster than the implementation on a TMS320C67x DSP platform.
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[7] M. Bolić, Architectures for the efficient implementation of particle fil-
ters, Ph.D. thesis, Stony Brook University, 2004.

[8] A. Athalye, M.Bolić, S. Hong, and P. Djurić, “Generic architectures
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