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ABSTRACT

This paper presents a variation of circulant matrix based LDPC
codes which allows more than one circulant identity matrix in a
submatrix of the parity check matrix. The aggregated LDPC sup-
ports higher decoding throughput with small increase in datapath
complexity. The construction algorithm, bit error rate (BER) per-
formance, information update rule and the architecture for high
decoding throughput are also presented.

1. INTRODUCTION

Low-density parity-check (LDPC) codes, which were first intro-
duced by Gallager [1] in 1962, have recently attracted tremendous
research interest because of their excellent error correction perfor-
mance. LDPC codes have been adopted in many standards such as
DVB-S2, 10GBase-T, 802.16e (WiMax) and 802.11n. However,
designing an LDPC code that has superior performance and can
be mapped efficiently into hardware, is still a challenge.

LDPC codes have a large degree of freedom in both code and
decoder design. The datapath of the decoder is generally simple,
and the operations can be easily parallelized. However, because of
the interconnection complexity, the fully parallel LDPC decoder is
huge for large block sizes [2]. The partial parallel decoder which
makes use of small block matrices with ordered structure is highly
preferred. Several LDPC codes with ordered structures based on
algebraic constructions have been proposed [3, 4]. These codes
make use of algebraic properties that achieve good bit error rate
(BER) performance.

Among the partial parallel decoding methods, the layered ap-
proach in which the processing is scheduled in the order of block
rows [3, 5] is preferable. However, in the parallel processing of
block rows, there exists data dependencies between two consecu-
tive block rows if there are non-zero submatrices at the same block
column of these two block rows. One way to remove the data de-
pendencies is to reorder the block rows of the parity check matrix
[6]. But this kind of reordering become very hard when the code
rate is high. This is because for high code rates, even though the
number of block rows reduces, a large number of non-zero subma-
trices has to be kept to maintain the BER performance.

In this paper we derive a variation of the circulant matrix based
LDPC codes [4] which allow more than one circulant identity ma-
trix within a submatrix (we will only consider at most two in this
paper). We refer to this as the aggregated circulant matrix (ACM)
based LDPC code. We show how ACM based LDPC code helps
remove the data dependencies between consecutive block rows,
and makes it possible to achieve higher throughput. The aggre-
gation algorithm is shown in Section 2. Performance simulation
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shows that the BER performance of this code under the layered
belief propagation (BP) algorithm is better than the non-ACM ver-
sion. In Section 3, a modified bit update algorithm that supports
parallel processing of block rows is presented along with the cor-
responding architecture. The modified update algorithm can be
applied to the decoding of ACM LDPC code for various soft deci-
sion algorithms such as BP, min-sum, etc. A decoder for the rate
4/5 code that is pipelined to 3 stages was synthesized using Syn-
opsys Design Compiler with TSMC 90 nm technology. It achieves
a throughput of 930 Mbps for 20 decoding iterations. The paper is
concluded in Section 4.

2. AGGREGATED CIRCULANT MATRIX (ACM) BASED
LDPC CODES

2.1. Circulant Matrix based LDPC codes

A fully parallel implementation of the LDPC code is highly com-
plex. For block size of 1024, the fully parallel implementation has
utilization of 50% and has 1.75 million gates [2]. Thus partially
parallel implementations which use submatrices with ordered struc-
ture are preferred [3, 5, 7, 8]. The submatrix is usually a circulant
matrix which is a cyclic shifted version of the identity matrix.

In this paper, we follow the notation in [4]. Let the dimension
of the block parity check matrix Hb be mb×nb; each submatrix is
Z ×Z, where Z is a prime number. The shifted value for the sub-
matrix (i, j) is Pi,j = bi−1aj−1 where a and b have multiplicative
order of nb and mb respectively, in Galois field GF(Z). The block
matrix Hb can be made up as Hb(i, j) = Ibi−1aj−1 , where Ix is
the circulant identity matrix with shift value of x. For simplicity,
we refer to Ix as ‘I’ in the rest of the paper. We denote the all-zero
submatrix by ‘O’ and the submatrix with two circulant identity ma-
trices aggregated by ‘II’ (we will show how to determine the shift
values in the next subsection).

2.2. ACM based Code Construction Algorithm

In this section, we describe the procedure for constructing ACM
based irregular LDPC codes; the procedure can also be applied for
regular codes.

Step 1: Determine the dimension of the block parity check
matrix (Hb of size mb ×nb) and determine the degree distribution
pair (u, v) such that the bit node degree is in the range [2, mb].
This can be done with the software in [9, 10]. The degree distri-
bution is then quantized such that the bit node density is integer
times 1

mb
, the check node density is integer times 1

nb
and the sum

of the bit/check node density remains 1. This step is important
since the performance of LDPC codes depend (to a large degree)
on the variable and check node degree distribution pairs [11].
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Step 2: Construct the block parity check matrix with elements
of ‘I’ and ‘O’. To reduce the encoding complexity, the resulting
block matrix should have an approximately lower triangle struc-

ture in the form of Hb =

�
�� A B

... T

C D
... E

�
�� =

�
Hb1

...Hb2

�
, as

detailed in [12]. This step is done with an algorithm similar to the
progressive edge-growth (PEG) in [13] or block flipping/shifting
(RBFS) in [14]. Let Θ be the threshold of bit node degree, i.e., we
perform aggregation of the bits with degree no less than Θ. We
construct the block matrix as follows:

1. Fill Hb2 with the lowest degree bit nodes available. The
result Hb2 should be in lower triangle.

2. Fill Hb1 with the highest degree bit nodes available until all
bit nodes been filled. In filling a bit node with degree ≥ Θ,
first fill the non-zero items pairwise ((i, j) and (i+ mb

2
, j)),

the remaining positions within the column are randomly
picked without conflicting the bit and check node degree.

Note that until this point, the algorithm does not require any
special steps for the construction of block parity check matrix com-
pared with existing constructions. Thus we can also adopt the in-
termediate construction from other designs with some modifica-
tion and proceed with the remaining steps (Step 3 and 4).

Step 3: Perform the “aggregation” on the block matrix ob-
tained from step 2. The non-zero elements in the matrix are filled
with ‘I’, zero elements are filled with ‘O’.

1. Choose the ‘unprocessed’ column with maximum column
weight; if there are more than one ‘unprocessed’ columns
with maximum column weight, start from the leftmost one
(j). For each i ≤ �mb

2
�, if there exists a column j′ such

that (i, j), (i + mb

2
, j), (i, j′) and (i + mb

2
, j′) are all filled

with ‘I’ (the structure is called a cycle-4 ‘I’-circle), goto 3;
otherwise goto 2.

2. If there still exist cycle-4 ‘I’-circle with two elements in the
current column, goto 3; otherwise, mark the current column
as ‘processed’. If all the columns with degree greater than
Θ are marked as ‘processed’, goto 4; otherwise goto 1.

3. Replace top-left element and bottom-right element of the
cycle-4 ‘I’-circle with II, and the other two elements with
O. Goto 1.

4. Exit.

Step 4: The block matrix obtained from step 3 guarantees
that there does not exist two ‘I’ in both (i, j) and (i + mb

2
, j) for

i = 1, · · · , mb, j = 1, · · · , nb. In this step we will expand block
matrix Hb to the actual parity check matrix H .

• If element (i, j) is ‘I’, it is replaced with cyclic-shifted iden-
tity matrix with shift value equals to bi−1aj−1(mod Z).

• If element (i, j) is ‘II’, it is replaced with two cyclic-shifted
identity matrix with shift value equals to bi−1aj−1 (mod p)
and b(i−1±�mb/2�)aj−1 (mod p). The “ ± ” sign in the
exponent of the second term is determined by the value of
i, if i ≤ �mb

2
�, it is “ + ”, otherwise “ − ”.

• All the elements ‘O’ are replaced with all zero matrix.

2.3. Design example of ACM LDPC code construction

In this section, we outline the construction of an irregular LDPC
code with code rate 4/5 in GF(31) for additive white Gaussian
noise (AWGN) channel. The study of multiplicative order in GF(31)
shows that we can choose a = 3, b = 6 as the construction ele-
ment. The parity check matrix then has nb = 30 and mb = 6, and
each submatrix is of size 31 × 31 (which results in a LDPC code
with block size of 930). The optimal degree distribution obtained
from [10] and our design results are listed in Table 1.

Node Degree Optimal Distribution Design Result

Bit Node Optimal Bit Dist. Quant. Dist. Node #
2 0.42348914827824 0.4 12
3 0.36868120674005 0.4 12
6 0.20782964498171 0.2 6

Check Node Optimal Check Dist. Quant. Dist. Node #
16 1 1 6

Table 1. Bit/Check node degree design result

From the above results, we construct the block matrix shown
in Fig. 1(a). The aggregated version is shown in Fig. 1(b) for
threshold Θ = 3. Here “I” represents a circulant matrix (the
shift values have not been listed for easier reading), “II” repre-
sents two circulant matrices aggregated in one block, and all the
empty blocks are zero matrixes.

The shaded submatrices in Fig. 1(a) are the submatrices that
contain data dependencies under iterative layered decoding. Clearly,
some of the dependencies can be removed from block row reorder-
ing. Others, such as those in block columns with 6 non-zero entries
can not be removed. In contrast, the data dependencies in the ag-
gregated Hb in Fig. 1(b) are all removable. Fig. 1(c) shows how
all the data dependencies in 1(b) have been removed with block
row reordering in decoding.
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I I I I I I I I I I I I I I I I

(a) Hb for rate 4/5 irregular code before aggregation
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(b) Hb for rate 4/5 irregular code after aggregation
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(c) Reordered Hb for rate 4/5 ACM irregular code

Fig. 1. An example of aggregation
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2.4. Performance of ACM LDPC codes

Fig. 2 shows the BER performance of the irregular 4/5 LDPC
code presented in Fig. 1. In the simulation, we assume that the
encoded data are modulated with BPSK and transmitted through
AWGN channel. The plots shows the resulting BER under 20 it-
erations of BP decoding. We can see that the ACM LDPC outper-
form the codes without ACM with around 0.1 dB coding gain at
BER=10−5.
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Fig. 2. BER performance of the rate 4/5 irregular LDPC

3. DECODER DESIGN FOR ACM LDPC CODES

3.1. Decoding of LDPC codes

LDPC decoding is done by either the bit flipping hard-decision al-
gorithm [1], or by the soft-decision iterative decoding algorithms
such as the belief propagation (BP) algorithm, the min-sum algo-
rithm, the λ-min algorithm [15], etc. All of them involve two kinds
of operations: variable (bit) node processing (VP) and check node
processing (CP). The operations are summarized below:

Initialization : En,m = 0, Ln = In (1)

V P : Ln,m = Ln − En,m (2)

CP : E
New
n,m = f

�
Ln′,m

��
n′∈S⊆N(m)

�
(3)

Bitupdate : L
New
n = Ln,m + E

New
n,m (4)

where In is the intrinsic information from the received signal,
Ei

n,m is the extrinsic information from check node m to variable
node n, Ln,m is the information from variable node n to check
node m. N(m) is the set of variable node which is connected with
node m in the bipartite graph. Similarly, M(n) is the set of check
node which is connected with node n. The different decoding al-
gorithms differ in how the function f(·) is evaluated. The set S is
a subset of N(m) when λ-min algorithm is used (S contains the
λ items with smallest magnitude), S = N(m) � {n} for the BP
algorithms. The f(·) function used in BP algorithm is

E
New
n,m = −

�
n′∈N(m)�{n}

sign(Ln′,m)·Ψ(
�

n′∈N(m)�{n}

Ψ(Ln′,m))

(5)

3.2. Modified Bit Update algorithm for parallel decoding of
ACM LDPC codes

The algorithms for the normal circulant matrix based LDPC codes
work fine for the ACM LDPC codes if the rows within a block row

are decoded serially or with small degree of parallelism. But for
very high throughput applications, such as in DVB-S2 and WiMax,
a large parallel factor is necessary. If the rows within a block row
have to be processed in parallel to increase the throughput, there
arises a problem. For the small block matrixes with two circulant
matrix aggregated, there are two set of LNew

n values generated
simultaneously and only one set should be stored.

For a specific n, let m1 and m2 represent the two check nodes
connected with n in the current block row. In this block row,
ENew

n,m1
and ENew

n,m2
are the actual extrinsic information values for

n. We rewrite the equations with notation

L
New
n = S(n,m1,m2) + E

New
n,m1

+ E
New
n,m2

(6)

where S(n,m1,m2) = In +
�

m′∈M(n)�{m1,m2}
En,m′ is the un-

changed part between Ln and LNew
n in this block row. We define

a new variable

Tn,m �

�
Ln,m − En,m + 2 × ENew

n,m , (m,n) ∈ II

Ln,m + ENew
n,m , (m,n) ∈ I

(7)

LNew
n is now written as

L
New
n =

�
Tn,m1

+Tn,m2

2
, (m1, n), (m2, n) ∈ II

Tn,m , (m, n) ∈ I
(8)

The result LNew
n is identical with the original algorithm as we will

show in the following.

L
New
n =

Ln,m1
− En,m1

+ Ln,m2
− En,m2

2
+ E

New
n,m1

+ E
New
n,m2

=
S(n,m1,m2) + En,m2

− En,m1

2

+
S(n,m1,m2) + En,m1

− En,m2

2
+ E

New
n,m1

+ E
New
n,m2

= S(n,m1,m2) + E
New
n,m1

+ E
New
n,m2

(9)

We can see that the modified bit update algorithm doesn’t af-
fect f(·) at all. It can be applied to all the decoding algorithms
(BP, min-sum and λ-min) to improve the throughput.

3.3. Decoder Architecture for ACM LDPC codes

Fig. 3 shows the top level architecture of the ACM LDPC decoder.
There are two set of memories in the decoder: extrinsic mem-

ory which stores the extrinsic information (En,m for the current
iteration) and variable node memory which stores the Ln for the
current iteration. Variable node unit (VNU) is a pool of variable
processing (VP) units; each VP is a parallel adder which compute
Ln − En,m. Check node unit (CNU) is a pool of check process-
ing (CP) units which perform the function described in eqn. (3).
The bit update combiner performs the function described in eqn.
(7). Because the memory organization in variable node memory
is column based, and the scheduling of the decoding within an it-
eration is check node based, the shuffling network and the inverse
shuffling network are required to take care of the spacing and time
shuffling. To further increase the throughput, a bypass MUX is
added to the input of the shuffling network. If the LNew

n data are
used immediately after the storage, we can directly send them to
the shuffling network by the bypass MUX and reduce one clock
cycle in the loop.

The throughput of the proposed ACM LDPC decoder is dou-
bled compared to the non-ACM counterpart when there exist data
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Fig. 3. LDPC decoder architecture

dependencies between consecutive block rows. The throughput of
the decoder under layered decoding is: (CodeRate* ParallelFac-
tor* ClockRate) /[(1-CodeRate) * CyclePerBlockRow*Iter]. The
synthesis result of the proposed decoder in TSMC 0.90 nm tech-
nology shows that the decoder with 3 pipeline stages works with
a clock rate=300MHz. The number of cycles per block row is 2
(the non-ACM counterpart requires 4). So the actual throughput
of the decoder for 20 iterations is 930 Mb/s. However, the pure
throughput value is not a good metric in evaluating the architec-
ture, because the value varies a lot based on the choice of code
rate, parallel factor and number of iterations. Instead the Clock-
Rate/CyclePerBlockRow ratio (CCR) is a better metric. The pro-
posed decoder architecture for ACM has a CCR of 150 MHz.

On the flip side, the parallel decoding of ACM LDPC codes
results in higher datapath complexity. More specifically we need
one more addition because of Eqn. (7) and one addition and one
1-bit right shift operation (whose complexity can be ignored) as
shown in Eqn. (8). Table 2 shows the logic complexity in datapath
of the parallel decoder. While the complexity of the datapath in-
creased by 20%, the achievable throughput is doubled. In any case,
the data path has been demonstrated to occupy a small percentage
of the overall decoder and thus this penalty is compensated for.

Arch 16-Adder/Xor Tree Adder LUT MUX
Non-ACM 31 1488 992 -

ACM 31 1860 992 186

Table 2. Data path complexity

Recently, we became aware of the work on geometric LDPC
construction [16] which also builds the submatrices with multiple
circulant matrices. Our work differs from [16] in that we perform
aggregation based on algebraic construction, and that we propose
an explicit construction algorithm to achieve high throughput. In
addition, the update rule that we proposed is also applicable to any
parallel decoding including the code in [16]. The method in [17]
uses the construction in [16] but constraints the shift values in the
aggregated submatrix. It requires extra buffers and/or partitioned
memory banks as well as complex control logic. In comparison,
our approach achieves high throughput with only a slight increase
in the complexity of the datapath.

4. CONCLUSION

In this paper we presented ACM LDPC codes which allows more
than one circulant identity matrix in one submatrix. The software
simulation shows that the ACM LDPC provides comparable or
even better BER performance compared with its non-ACM coun-
terpart. The construction algorithm, information update rule and
decoder architecture which supports the parallel decoding of these
codes for high throughput applications are also presented.
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