
A PARALLEL PROCESSING HARDWARE ARCHITECTURE
FOR ELLIPTIC CURVE CRYPTOSYSTEMS

Kazuo Sakiyama, Elke De Mulder, Bart Preneel and Ingrid Verbauwhede

Katholieke Universiteit Leuven
ESAT-COSIC

B-3001 Leuven-Heverlee, Belgium

ABSTRACT

We propose a parallel processing crypto-processor for Ellip-
tic Curve Cryptography (ECC) to speed up EC point multi-
plication. The processor consists of a controller that dynam-
ically checks instruction-level parallelism (ILP) and multiple
sets of modular arithmetic logic units accelerating modular
operations. A case study of HW design with the proposed ar-
chitecture shows that EC point multiplication over GF(p) and
GF(2m) can be improved by a factor of 1.6 compared to the
case of using single processing element.

1. INTRODUCTION

The implementation of a fast Public-Key Cryptography (PKC)
is a challenge in embedded systems. Among PKCs, the best
well-known and most widely used PKCs are RSA [1] and
ECC [2] [3]. In embedded systems, ECC is regarded more
suitable than RSA because ECC operates with higher perfor-
mance, lower power consumption, and smaller area of hard-
ware. Nevertheless, the performance is much slower than
private-key cryptography such as AES.

A lot of work has been reported on speeding up the perfor-
mance of ECC. The work can be classified by the following
optimization levels: First of all, a mathematical optimization
of ECC has been investigated in order to reduce the number
of modular multiplications in a point multiplication. Sec-
ondly, a high speed modular multiplier has been researched
for both hardware and software implementations. Among the
proposed algorithms, Montgomery’s algorithm [4] is consid-
ered as one of the fastest algorithms especially in terms of
hardware. Thirdly, an architecture-level improvement can be
considered. Our interest in this paper lies in this level.

The originality of our design is that an EC point multi-
plication can still be accelerated by using multiple modular
arithmetic logic units (MALUs) in parallel. Some previous
work reported parallel use of two modular arithmetic units for

Kazuo Sakiyama is funded by FWO project G.0450.04. Elke De Mulder
is funded by Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen). This research has been supported
by the EU IST FP6 projects SCARD and ECRYPT.

accelerating the EC point multiplication. In that work, point
doubling and point addition are reformulated so that they can
be executed by two processing elements. On the contrary,
our proposed architecture is flexible in the following sense:
1) it can deal with two or more MALUs. 2) parallelism can
be found on the fly by dynamically checking the instructions.
3) therefore, we can deal with any type of algorithm of point
multiplication. Another research interest is to clarify the ap-
propriate number of MALUs for ECC.

The remainder of this paper is as follows. Sect. 2 gives a
survey of relevant previous work for ECC implementations.
In Sect. 3, our proposed system architecture is described. In
Sect. 4 the architecture of the MALU is explained. The pro-
posed MALU supports the finite field operation over GF(p)
and GF(2m). Sect 5 explains how to check the ILP in our
design. Sect. 6 shows the performance evaluation result of
example cases of 160/256-bit ECC over GF(p) and GF(2m).
The implementation result on an FPGA is reported and com-
pared with other work in Sect. 7. Sect. 8 concludes the paper.

2. RELATED WORK

The idea of a unified multiplier for PKC was first introduced
by Savaş, Tenca, and Koç in [5]. The most relevant published
work is the one of Satoh and Takano [6]. They present a dual
field multiplier with the best performance in both types of
fields so-far. The throughput of an EC point multiplication
is maximized by use of a Montgomery multiplier and an on-
the-fly redundant binary converter. The biggest advantage of
their design is scalability in operand size and also flexibil-
ity between speed and hardware area. The same idea is the
basis of the work of Großschädl in [7]. The bit-serial mul-
tiplier which is introduced is performing multiplications in
both types of fields. Batina, et.al., reported parallel use of
two modular arithmetic units for accelerating the EC point
multiplication [8]. In general, there are two possible methods
to find a parallelism; one is by recompilation of SW (or a con-
trolling logic in an ASIC), another is by HW that can check
the parallelism on the fly. The later method is known as a
super-scalar architecture that is often used in current high-end

III 904142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

IQB

Main Controller

IBC

32-bit
instructionsBuffer

Full
32-bit data

Instruction Bus

D
at

a
B

us

DBC

MALU

MALU

MALU

R
A

M
C

on
tr

ol
le

r

MALU
…

RAM

D-MAL

Instruction
Decoder

X
Y

NVS
VC

R

S

MALU

Mode
REGs

Instruction Bus

RAM Controller

Program
ROM

Fig. 1. System architecture of parallel processing ECC
processor.

RISC CPUs.

3. SYSTEM ARCHITECTURE

The proposed parallel computing ECC cryptosystem is com-
posed of the main controller, several MALUs and RAM which
is shared between the MALUs, i.e., this RAM is the so-called
single-port shared SRAM. The configuration of MALUs and
RAM is assumed flexible by setting interconnections among
them. The block diagram for the system is illustrated in Fig. 1.

The main controller has three in- and outputs, one of them
is a signal which tells the controller to stop sending instruc-
tions when the instruction buffer is full. A 32-bit output is
used to send instructions and a 32-bit input/output passes data
back and forward between the controller and the datapath. A
dedicated controller is chosen instead of a normal CPU be-
cause of two reasons. Firstly, instructions can be sent at a
constant timing interval. Secondly, it is more compact and
faster, it is possible to send one instruction per cycle. The
datapath is made with a Harvard architecture, it has a sepa-
rate data bus and instruction bus. The data transfer between
the main controller and the MALUs is controlled by a Data
Bus Controller (DBC). This path is only activated when an
initial point and the parameters of an elliptic curve are sent to
the RAM, or when the result is retrieved. During a point mul-
tiplication, the controller keeps on sending instructions to the
instruction decoder, they are stored in an Instruction Queue
Buffer (IQB) via the Instruction Bus Controller (IBC). The
IQB has two main roles. First, the IBC checks if there is
an instruction-level parallelism (ILP) by checking the data-
dependency in the IQB and forwards them to the different
MALU(s). More information about the ILP can be found in
Sect. 5, for the MALUs see Sect. 4. Another purpose of the
IQB is buffering the difference of the speed of issuing instruc-
tions and the processing speed. The program ROM stores the
instructions which are sent by the main controller. To be able

Four-to-two CSA
Carry>>1 Sum>>1

Four-to-two CSA

x[i]Y m[i]N

x[i+1]Y m[i+1]N

Carry>>1 Sum>>1

Four-to-two CSA

x[i+2]Y m[i+2]N

…

Four-to-two CSA

1

1

1

1

d

k+2

k

k+2S or S

CPA

R

0 or N+1

k+2

Carry>>1 Sum>>1

k+2

VC VS

k+2

D-MAL

Fig. 2. Datapath of the MALU

to store all instructions for an ECC point multiplication of
both GF(p) and GF(2m) (which can be chosen by setting the
Mode register), only 596 bytes are necessary.

4. MODULAR ARITHMETIC LOGIC UNIT

The data path of the MALU (D-MAL) is a Carry-Save Adder
(CSA) based GF(p) Montgomery modular multiplier (Fig.2).
The four-to-two (4-2) CSAs are used to sum up four types of
inputs which are xy,mn, vs and vc, and outputs the redun-
dant CS-form that has a value of (2vc + vs), where vs and vc
are the virtual sum and the virtual carry respectively. The bit
multiplications xy and mn are the main inputs for comput-
ing a bit-serial Montgomery multiplication, i.e. (xy + mn +
2vc + vs)/2 and hence the result of each multiplication is
right-shifted by one bit.

Input/output vectors for such bit-level variables are de-
scribed as X,Y, M, N, S, V S, and V C, where X and Y are
the multiplier and multiplicand, N is the modulus, and V S
and V C are intermediate variables representing a redundant
CS-form. The values in vector M are calculated on the fly
so that the least significant bit of V S is zero. In addition, the
augend vector S is provided to the MALU by d bits in every
cycle and eventually added to the result of a modular multi-
plication. When subtracting S, S̄ is provided instead of S and
(N + 1) is added in a later stage.

The MALU has two independent stages. One is the Carry-
Save(CS)-stage that operates on Montgomery’s algorithm in
a redundant CS-form. Another stage converts the CS-form
integer into a normal integer by propagating carries, namely
the Carry-Propagate(CP)-stage. Although it is possible to ex-
ecute both stages with CSAs, we allocated a separate Carry-
Propagate Adder (CPA) to accelerate the CP-stage. The CP-

III 905

EX(CS) EX(CP)IDIF R W

EX(CS)IDIF R W

MALU#0

MALU#1

1 1 3 1 Clock cycle
�
��� ����

�

EX(CS)IDIF R WMALU#2

l

EX(CP)

EX(CP)

IDIF R

IDIF

…

…

4

Fig. 3. Example of multiple issue of instructions over GF(p).
(IF: Instruction Fetch, ID: Instruction Decode, EX(CS): Ex-
ecution of CS-stage, EX(CP):Execution of CP-stage, R/W:
Read/Write from/to RAM)

stage is skipped for GF(2m) operations.
The proposed datapath is flexible in the digit size, d which

can be decided by exploring the best combination of perfor-
mance and cost, and the field size, k that is determined by the
key-length of ECC.

Here, we define an instruction, MALUN that proceeds
through the CS-stage and CP-stage consecutively and com-
putes a field operation shown in Eq. 1. Here R is selected
as R = 2k+α where k is the bit-length of the modulus and
α is a value to be determined so that the final reductions can
be avoided. In our case, we chose α = 4 and X,Y < 4N .
For convenience of repeated use of Eq. 1, the so called Mont-
gomery form is applied because the output is in the Mont-
gomery form as well.

MALUN (XR, Y R, SR) = (XY ± S)R mod N (1)

The whole procedure to execute MALUN starts from an
instruction fetch and decode (IF and ID). Then, X,Y and S
are loaded via RAM (R) for executing the succeeding CS-
stage. The number of cycles necessary to execute the CS-
stage varies from the configuration of the MALU, i.e., �(k +
α)/d� cycles are required for a modular multiplication over
GF(p). After the CS-stage, an l-cycle CP-stage is executed
for GF(p). The number of cycles, l is decided by consider-
ing the critical path delay of the CPA and the frequency of
the provided clock. The result is stored to the RAM (W) in
the last step. When using multiple MALUs, succeeding in-
structions should wait for three cycles to escape any memory-
access conflicts. This is illustrated in Fig 3.

5. EXPLORING INSTRUCTION-LEVEL
PARALLELISM

ILP is checked for all instructions as long as two or more
instructions are buffered in the IQB. Here, we introduce our
strategy to find ILP. A MALUN instruction has three source
operands and outputs the result to the RAM, i.e., MALUN

deals with four types of addresses, X, Y, S, and R that are
expressed as follows:

MALUN : R = X, Y, S (2)

Table 1. Cycle counts [cycle] of EC point multiplication exe-
cuted in different number of MALUs.

Field Type 1MALU 2MALU 3MALU 4MALU
160-bit GF(p) 165,326 111,046 103,594 103,594
256-bit GF(p) 399,785 269,886 251,826 251,826

GF(2163) 135,689 86,277 83,901 83,901
GF(2257) 326,688 210,672 205,110 205,110

With out-of-order execution, the following dependencies
are possible between two instructions, MALUi

N and MALUj
N

(i and j are labels indicating issued order; i < j).
1) Read-After-Write (RAW) Dependency in order execu-

tion: Ri = Xj , Ri = Y j , or Ri = Sj . If the preceding result
of Ri is necessary for following instructions, the instruction
cannot be issued until the preceding instruction finishes.

2) RAW Dependency in out-of-order execution: Rj =
Xi, Rj = Y i, or Rj = Si. In this case, Instruction MALUj

N

cannot be issued until the instruction MALUi
N finishes.

The proposed architecture does not need to check Write-
After-Read and Write-After-Write dependencies although they
should be checked in a general super-scalar machine. This is
because MALUN is a fixed-length instruction. Suppose we
deal with D sets of instructions to search ILP, the number of
conditions to check become 3(D − 1)2. The hardware com-
plexity for ILP expands with a large D.

6. PERFORMANCE EVALUATION OF EC POINT
MULTIPLICATION

The system performance is evaluated with GEZEL [9] which
can make a fast cycle-accurate simulations. The detailed hard-
ware configuration is set as follows:

- Number of MALUs (#MALU) = 1 to 4
- MALU Configuration: k = 160/256, d = 4
- Depth of ILP exploration: D = 4

We use projective coordinates in EC point multiplication.
Three sets of points, P, 2P, and 3P are pre-computed and
used for the left-to-right binary algorithm [10], i.e., one point
addition is always executed after two point doublings are ex-
ecuted. A modular inversion which is necessary for a coordi-
nate conversion is executed with Fermat’s Little Theorem. In
our simulation, all necessary computations for EC point mul-
tiplication are included. The performance of a 160/256-bit
EC point multiplication (ECC-160p / 256p and ECC-163b /
257b) for different number of MALUs is summarized in Ta-
ble 1. Considering allocation of two or three MALUs in the
system, the performance improvement by a factor of 1.5 ˜ 1.6
is observed compared to the case of using one MALU. Any
more speed-up is not observed even when increasing the num-
ber of MALUs to more than three. Therefore, it is useless to
allocate four or more MALUs in our ECC implementation

III 906

Table 2. Performance Comparison of EC point multiplica-
tion.

Ref.
Target

Field
fmax Perf.

Comments
Platform [MHz] [msec]

160-bit GF(p) 100.0 1.04 3 MALUs, 6 BRAMs
This Xilinx GF(2163) 100.0 0.84 + 8,954 Slices
work Virtex-II 256-bit GF(p) 100.0 2.70 2 MALUs, 9 BRAMs

pro GF(2257) 100.0 2.11 + 10,847 Slices

[6]

160-bit GF(p) 137.7 1.21
0.13µm- GF(2160) 510.2 0.19 64-bit multiplier
CMOS 256-bit GF(p) 137.7 2.68 115.5 Kgates

GF(2256) 510.2 0.45
[8] Virtex-E 160-bit GF(p) 53 3.9 Two sets of mult.
[11] Virtex-E 192-bit GF(p) 40 3 p = 2192 − 264 − 1

[12] Virtex-E GF(2167) 76.7 0.21 Digit size = 16

from performance point of view.

7. IMPLEMENTATION RESULTS

We implemented two designs on a FPGA with different k.
In case of k = 256, we allocated two MALUs because of
resource limitation of our FPGA board. As shown in Table
2, our FPGA implementation shows an equivalent or better
performance than other previous work for GF(p). However,
regarding GF(2m), the results of Satoh and Takano [6] and
Orlando and Paar [12] are faster than our result for GF(2m).
This is obviously due to the faster clock frequency in case
of the design of [6]. We note that the operation counts of
their results (98 Kcycle and 230 Kcycle for GF(2160) and
GF(2256), respectively) are more than ours. Regarding the
design of [12], the architecture is intensively dedicated to
GF(2m). In this term, future work will deal with implement-
ing a fast dual-field ECC which runs at the same clock fre-
quency in both fields.

8. CONCLUSIONS

We introduced a parallel processing hardware architecture for
ECC implementation. The proposed system is flexible in the
MALU configuration and the number of processing elements.
In conclusion, the performance of an EC point multiplication
can be improved by using additional processing elements and
an IQB that buffers the instructions and explores ILP dynam-
ically. We could find ILP up to three instructions in our ECC
program. The prototype implementation shows a significantly
fast performance for both types of fields.

9. REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, ”A Method for
Obtaining Digital Signatures and Public-Key Cryptosys-
tems,” Comm. ACM, vol. 21, pp. 120-126, 1978.

[2] N. Koblitz, ”Elliptic Curve Cryptosystems,” Math. Com-
putation, vol. 48, pp. 203-209, 1987.

[3] V. S. Miller, ”Use of Elliptic Curve in Cryptography,” Ad-
vances in Cryptology: Proceedings of CRYPTO’85. Lec-
ture Note in Computer Science, Springer-Verlag vol. 218,
pp. 417-426, 1985.

[4] P. L. Montgomery, ”Modular multiplication without trial
division,” Mathematics of Computation, vol. 44, pp. 519-
21, 1985.

[5] E. Savaş, A. F. Tenca and Ç. K. Koç, ”A Scalable and
Unified Multiplier Architecture for Finite Fields GF(p)
and GF(2m),” Cryptographic Hardware and Embedded
Systems: Proceedings of CHES’00. Lecture Note in Com-
puter Science, Springer-Verlag, vol. 1965, pp. 281-296,
2000.

[6] A. Satoh and K. Takano, ”A Scalable Dual-Field Elliptic
Curve Cryptographic Processor,” IEEE Trans. Comput-
ers, vol. 52, pp. 449-460, 2003.

[7] J. Großschädl, ”A bit-serial unified multiplier archi-
tecture for finite fields GF(p) and GF(2n),” Crypto-
graphic Hardware and Embedded Systems: Proceed-
ings of CHES’01. Lecture Note in Computer Science,
Springer-Verlag, vol. 2162, pp. 206-223, 2001.

[8] L. Batina, G. Bruin-Muurling, and S. B. Örs, ”Flexi-
ble Hardware Design for RSA and Elliptic Curve Cryp-
tosystems, ” Proceedings of Topics in Cryptology - CT-
RSA 2004. Lecture Note in Computer Science, Springer-
Verlag, vol. 2271, pp. 250-263, 2004.

[9] P. Schaumont and I. Verbauwhede, ”Interactive cosimu-
lation with partial evaluation,” Proc. Design Automation
and Test in Europe (DATE 2004), pp. 642-647, 2004.

[10] A. J. Menezes, ”Elliptic Curve Public Key Cryptosys-
tems,” Kluwer Academic Publishers, 1993.

[11] G. Orlando and C. Paar, ”A Scalable GF (p) Elliptic
Curve Processor Architecture for Programmable Hard-
ware,” Cryptographic Hardware and Embedded Systems:
Proceedings of CHES’01. Lecture Note in Computer Sci-
ence, Springer-Verlag, vol. 2162, pp. 118-125, 2001.

[12] G. Orlando and C. Paar, ”A High-Performance Recon-
figurable Elliptic Curve Processor for GF(2m),” Cryp-
tographic Hardware and Embedded Systems: Proceed-
ings of CHES’00. Lecture Note in Computer Science,
Springer-Verlag, vol. 1965, pp. 48-56, 2000.

III 907

