
MODELING AND ANALYSIS OF WINDOWED SYNCHRONOUS ALGORITHMS

Joachim Keinert

Fraunhofer
Institute for Integrated Circuits IIS

Erlangen, Germany
ket@iis.fraunhofer.de

Christian Haubelt, Jürgen Teich

Hardware-Software-Co-Design
Department of Computer Science 12,

University of Erlangen-Nuremberg, Germany
{haubelt,teich}@cs.fau.de

ABSTRACT

Sliding window algorithms are fundamental parts of each image pro-

cessing system. Especially those belonging to the class of static

algorithms offer various possibilities for analysis and optimization.

Only if this potential is exploited, a high level synthesis of such al-

gorithms will lead to efficient implementations.

Such an analysis relies on an efficient representation by a well-

defined model of computation. It must abstract important properties

of sliding windows as for instance the relation between input and

output data as well as the required buffer space. In this paper, a corre-

sponding static model of computation for sliding window algorithms

is elaborated, called Windowed Synchronous Data Flow (WSDF). Its

main focus lies on applications with two or more dimensions. Fur-

thermore, the WSDF balance equation is derived allowing to verify

bounded token accumulation during execution.

1. INTRODUCTION

Analysis and optimization of sliding window algorithms for efficient

synthesis requires an expressive representation by a formal model

of computation. However, currently well known data flow models,

described in Section 2, can satisfy this requirement only with dif-

ficulties as will be shown in Section 3. Thus, in Section 4 of this

paper, we will propose a new model called WSDF that allows for

intuitive descriptions of sliding window algorithms by abstraction to

common important properties. Supporting an arbitrary number of di-

mensions, it is particularly adapted for multi-dimensional image and

signal processing systems. Section 5 establishes the WSDF balance

equation in order to verify bounded token accumulation on a single

edge. Due to space restrictions, proofs must be omitted and can be

found in [1].

2. RELATED WORK

In the past, many different static data flow models of computation

have been proposed, as for instance Synchronous Data Flow (SDF)
[2], Cyclo Static Data Flow (CSDF) [3], Multidimensional Synchro-
nous Data Flow (MDSDF) [4], Fractional Rate Data Flow (FRDF)
[5] and CV-SDF [6].

Their graphs G consist of a set V of vertices vi ∈ V represent-

ing actors. The latter ones are connected by edges e ∈ E ⊆ V × V .

To each edge, a buffer is assigned storing arriving tokens. If an ac-

tor is executed or fired, a certain amount of tokens is removed from

each input edge as well as appended to each output edge. An actor

can be fired, if on each input edge enough tokens are available to be

consumed.

In SDF, the number of tokens produced and consumed by an ac-

tor vi is the same for all invocations whereas they can vary cyclically

with a fixed period in CSDF graphs. In MDSDF, token consumption

and production is constant, however tokens form a rectangular multi-

dimensional structure consisting of data elements. An actor can only

be fired, if in each dimension there are enough data elements for one

consumed array. FRDF introduces the concept of fractional tokens
that are composed of several data elements. A single actor invocation

can produce or consume only parts of them.

Temporal execution of a data flow graph G is controlled by a

schedule being a sequence S = [v1, v2, . . .] whose elements repre-

sent invocations of the graph actors vi ∈ V . Each repetition of the

schedule is called a schedule period. A finite schedule which invokes

each actor of the graph G at least one time and which does not cause

a net graph state change is a so-called periodic schedule. The exact

meaning of the graph net state depends on the underlying model of

computation. In SDF, the state corresponds to the number of tokens

stored in the edge buffers, whereas for CSDF additionally the actor’s

position in the firing sequence is taken into account. The number of

actor invocations during a single period of a periodic schedule can be

calculated by a so-called balance equation. Its exact form depends

on the underlying data flow model and can be found in [2, 3, 4, 5].

3. MODELING OF SLIDING WINDOW ALGORITHMS

Image processing algorithms can be classified among others by their

spatial locality. In this context, we distinguish point, global and local
algorithms. The latter ones are important parts of almost every image

processing system and are based on sliding windows which might

overlap or not.

Figure 1 illustrates the principle of sliding window algorithms:

Beginning at the upper left border (1), the window moves by ∆c1,1

pixels to the right until arriving at the border (2). Then, the window

jumps back to the left image border and moves down by ∆c2,2 pix-

els. This process continues until reaching the lower right corner of

the image (3). For each window position, one or more pixels of the

output image are generated. In some cases, the algorithms require a

border extension as shown in Figure 1 for correct results.

In the following, we suppose a given stream-based image pro-

cessing system. The image to process is generated by a source actor

and passed to one or more succeeding actors performing sliding win-

dow operations.

3.1. Modeling by SDF

Sliding window operations as shown in Figure 1 are cyclo-static by

their nature. Supposing ∆c1,1 = ∆c2,2 = 1, a sink actor cannot

III ­ 8921­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

start firing until several input pixels are available. Once however

started, an output value can be generated with each new input pixel.

Hence, an SDF model on pixel level is not possible, but an actor has

to produce or consume complete images. This, however, leads to

very inefficient buffer allocation which especially in hardware im-

plementations cannot be tolerated.

CV-SDF extends the SDF-model by splitting images into slices

representing lines or blocks for more buffer efficient implementa-

tions. In order to support sliding window algorithms, it allows for

multiple lecture of slices and frames. As however neither the size of

the frames nor of the slices is specified, this reduces the possibilities

for analysis. Furthermore, CV-SDF restricts to a one-dimensional

representation of sliding window algorithms, and in general slices

are coarser than pixels.

3.2. Modeling by CSDF

Figure 2 shows a CSDF model for a sliding window algorithm. It

consists of three phases. During the preparation phase γ, no output

pixel can be generated, because there are not enough input pixels

available. If the action phase α is reached, a resulting output value

can be calculated for each incoming pixel. The termination phase β
finally assures, that the input and the output images have the same

size, by generating output values without needing any further input.

In comparison with SDF, the CSDF solution is much more eco-

nomic concerning memory resources, because it is not necessary to

store complete images. However, the CSDF model in Figure 2 does

not allow to derive the necessary amount of buffer memory for stor-

age of intermediate lines. Furthermore, it does not show all degrees

of parallelism as dependencies between the input and output pixels

cannot be extracted due to hidden buffer memory. Moreover, CSDF

models are not very general. In Figure 2 for instance we suppose,

that the input image is generated line by line. Other production pat-

terns would require other models.

3.3. Modeling by MDSDF

Many of the problems identified in Section 3.2 are due to the rep-

resentation of a multi-dimensional problem by a uni-dimensional

model of computation. Thus, MDSDF would significantly improve

the situation, however it is not capable to represent overlapping, slid-

ing windows.

4. WINDOWED SYNCHRONOUS DATA FLOW (WSDF)

In the following, a novel model of computation for sliding win-

dow algorithms called Windowed Synchronous Data Flow (WSDF)
is elaborated. Due to limited space, proofs are omitted and can be

found in [1], where extensions for models with windows of more

than two dimensions are explained as well.

Fig. 1. Illustration of a sliding window. Each square corresponds

to an image pixel. The extended border of the image frame is drawn

gray hatched. 3×3 pixel windows are marked by a thick frame each.

Definition 4.1 WSDF graph
A WSDF graph is a tuple

G =

„
V, E,−→p ,−→v ,−→c , ∆c,−→u ,

−→
d ,

−→
b
s
,
−→
b
t

«
V is the set of vertices representing actors. E ⊆ V × V is the set of
edges connecting the actors and transporting data elements in form
of tokens with dimension n. The source of an edge is denoted by
src (e), the sink by snk (e).

The token production in a WSDF graph is specified by the func-
tions −→p (e) and −→v (e) (see Section 4.2), the token consumption
is described by the functions −→c (e), ∆c (e) and −→u (e) (see Sec-

tion 4.3). The function
−→
d (e) defines initial tokens on an edge and is

described in Section 4.4.
−→
bs (e) and

−→
bt (e) model border processing

and are explained in Section 4.5.

Figure 3 illustrates the WSDF notation by help of a graph with two

actors A1 and A2 and a single edge.

4.1. WSDF Tokens

In WSDF, tokens are n-dimensional arrays of data elements. The

model distinguishes between effective and virtual tokens as explained

in the following paragraph. Their size is specified by a vector with n
dimensions. For instance, having two-dimensional tokens, the first

dimension of the vector specifies the number of columns, the second

the number of rows.

4.2. WSDF Token Production

Definition 4.2 WSDF Token Production
Each time, a source actor src (e) is fired, it produces an effective

token of constant size. The latter one is given by the function −→p :
E → N

n. Its abbreviated form is given by −→pe := −→p (e).
Effective tokens are combined to so-called virtual tokens of size

−→v (e) =: −→ve , with −→v : E → N
n.

Figure 4 shows an example of WSDF token production: Each

time, the source actor is fired, it produces an array of data elements

with two columns and one row. These tokens are combined to a

virtual token with five columns and two lines.

Virtual tokens form a unit of data elements belonging together

and model for instance images or blocks composed of several pix-

els. In principle, they could also be used to specify the pixels on

which the sliding window operation shall take place. However, as

some algorithms as for instance difference image calculation require

combination of several input images or blocks, we additionally intro-

duce the concept of virtual token unions as explained in Section 4.3

in order to simplify modeling.

The decomposition of virtual tokens into effective tokens corre-

sponds to the principles introduced in FRDF [5] and leads to efficient

buffer allocations.

Fig. 2. CSDF model of a sliding window operator. It is supposed,

that both the input and the output image are generated pixel by pixel.

The translational displacement of the window in both horizontal and

vertical direction amounts one. α, β and γ depend on the window

and input image extensions. Further details can be found in [1].

III ­ 893

4.3. WSDF Token Consumption

In contrast to the models of computation discussed above, WSDF

allows multiple reads of individual data elements by introducing

sliding windows. They are typical for many local image processing

transforms. Such algorithms are defined by the size of the window

and the sampling pattern as well as by the set of data elements on

which the sliding window operation takes place. In WSDF, this set

is represented by the concept of virtual token unions.

Definition 4.3 Virtual Token Union
Virtual token unions are defined on each edge and represent the set
of data elements on which the sliding window operation takes place.
They consist of one or more virtual tokens whose number for edge e
is defined by the function −→u : E → N

n, with −→ue := −→u (e).

〈−→u ,−→ei 〉, the dot product of −→u and −→ei , represents the quantity
of virtual tokens in dimension i composing the virtual token union.
Hence, their overall number is given by

Qn

i=1〈
−→u ,−→ei 〉. Further-

more, a virtual token union may contain an extended border due to
border processing as explained in Section 4.5.

Example 4.1 Figure 4 illustrates a virtual token union consisting
of 2 ·1 virtual tokens. Extended borders are not included, but will be
explained in Section 4.5.

Definition 4.4 WSDF Token Consumption
Each time, a sink actor snk (e) is executed, it reads a multidimen-
sional token of constant size. The size of the token corresponds to
that of the window and is defined by the function −→c : E → N

n, with
−→ce := −→c (e).

An actor v is executable, if on each incoming edge enough data
elements are stored, so that to each position of the window −→c (e) a
corresponding data element can be assigned.

Inside a virtual token union, the window progression is defined
by the diagonal sampling matrix ∆c (e), 〈∆c · −→ei ,

−→ei 〉 defining the
window translation in dimension i:

∆c : E → N
n×n

, e �→

2
64

c1,1 (e) · · · 0
...

. . .
...

0 · · · cn,n (e)

3
75 =: ∆ce

All window components must belong to the same virtual token
union. If the sliding window leaves a virtual token union, the sam-
pling process is restarted in the upper left corner of the next virtual
token union.

The introduced token consumption and production rules correspond

to those of MDSDF. However, a produced data element might be

read several times. Hence, it can only be discarded from the edge

buffer after the final read.

Fig. 3. WSDF graph with two actors and a single edge for illustration

of the introduced notation

Example 4.2 Figure 1 illustrates the window progression for the
graph given in Figure 3. The sliding window moves as described in
Section 3 corresponding to ∆ci,i = 〈∆c · −→ei ,

−→ei 〉, i = 1, 2. When
the sliding window arrives at position 3, reading of a new virtual
token union at position 1 is started.

4.4. WSDF Delay Elements

The WSDF model uses the same interpretation of delay elements as

the MDSDF model introduced in [4].

Definition 4.5 WSDF Delay Element
Each edge e of a WSDF graph G can have a positive, multidimen-

sional delay
−→
d : E → N

n
0 , with

−→
de :=

−→
d (e) . 〈

−→
d (e) ,−→ei 〉 defines

the number of initial hyper planes orthogonal to −→ei .

Figure 5 illustrates the existence of initial data elements supposing
−→
d =

`
3 1

´T
.

4.5. Modeling of Border Processing

The application of a sliding window algorithm without performing

any border processing leads to output images which do not have the

same size than the input images. In most cases, this is not desired. In

order to remedy the situation, the input image is virtually extended

by a border as shown in Figure 1.

In WSDF, border processing is taken into account by enlarging

the virtual token unions with an extended border. The latter one is

described by two n-dimensional vectors
−→
bs and

−→
bt .

−→
bs,t : E → Z

n, e �→
−→
bs,t (e) =:

−→
bs,t
e

〈−→u ,−→ei 〉 · 〈
−→v ,−→ei 〉 + 〈

−→
bs ,−→ei 〉 + 〈

−→
bt ,−→ei 〉 > 0

Their interpretation for positive values is shown in Figure 5.

Negative values lead to suppression of data elements. Data elements

belonging to the extended borders are supposed to be set to a con-

stant value. Nevertheless, also symmetric border extension can be

modeled by such an approach. Further details can be found [1].

5. WSDF BALANCE EQUATION

Implementation of static models of computation requires, that they

are balanced, i.e. that the number of tokens accumulated on a sin-

gle edge stays finite upon periodic activation. This property can be

verified by the so-called balance equation. It assures, that within one

(a) WSDF graph fragment

(b) Combination of effective tokens to virtual tokens

Fig. 4. Example for WSDF token production showing the composi-

tion of a virtual token −→v0 by effective tokens −→p0

III ­ 894

period of a periodic schedule, the number of produced and consumed

tokens is identical.

This section shows that it is possible to introduce such a balance

equation also for WSDF graphs. Due to restricted space, proofs must

be omitted and can be found in [1].

Corollary 5.1 Given a sink actor snk (e) of edge e. Then, the
number of invocations for one single input virtual token union in
dimension i is given by

〈−−→rvtu (e) ,−→ei 〉 =
〈−→ue,

−→ei 〉 · 〈
−→ve ,−→ei 〉 + 〈

−→
bs
e +

−→
bt
e −−→ce ,−→ei 〉

〈∆ce ·
−→ei ,

−→ei 〉
+ 1

Example 5.1 Given the graph in Figure 3 belonging to Figure 1,
the number of sink actor invocations per virtual token union can be
calculated to

−−→rvtu =

„
1·7+2−3

1
+ 1

1·4+2−3
1

+ 1

«
=

„
7
4

«

Definition 5.1 A WSDF graph is called valid, if and only if ∀e ∈
E, ∀1 ≤ i ≤ n : 〈−−→rvtu (e) ,−→ei 〉 ∈ N.

Theorem 5.2 WSDF Graph Balance Equation
Given a valid WSDF-Graph. Then the number of actor invocations
in dimension i in order to return the WSDF graph into its initial state
can be calculated by

∀1 ≤ i ≤ n : −→ri =

2
64

Li (v1) 0 0

0
. . . 0

0 0 Li

`
v|V |

´
3
75 · −→qi (1)

Li (v) designates the minimal actor period and can be calculated

by Li (v) := 〈
−→
L (v) ,−→ei 〉 = scme∈E, snk(e)=v ({〈−−→rvtu (e) ,−→ei 〉}).

scm (A) is the smallest common multiple of all members of the
set A. If A = ∅, we define scm (A) = 1.

Both −→ri and −→qi are strictly positive integer vectors. 〈−→ri ,
−→ej 〉 is

the number of invocations of actor vj in dimension i.
−→qi can be calculated by2

6666664

Γ1,1,i · · · Γ1,v,i · · · Γ1,|V |,i

...
...

...
Γe,1,i · · · Γe,v,i · · · Γe,|V |,i

...
...

...
Γ|E|,1,i · · · Γ|E|,v,i · · · Γ|E|,|V |,i

3
7777775

| {z }
Γi

·−→qi =
−→
0 (2)

Fig. 5. Illustration of the border processing operator combined with

initial data elements for the graph shown in Figure 3 and for a single

virtual token union. It consists of an extended border frame hatched

in light grey and one virtual token. The latter one includes one initial

row and three columns.

with

Γe,v,i =

j
Li (v) · 〈−→pe ,−→ei 〉 if v = src (e)

0 otherwise

−

(
Li(v)·(〈−→ve,−→ei〉·〈−→ue,−→ei〉)

〈−−→rvtu(e),−→ei〉
if v = snk (e)

0 otherwise

Γi is called the topology matrix of dimension i. It has exactly the

same consistency properties as for SDF graphs. Hence, we can de-

rive from [2] that for a connected graph there exist strictly positive

integer solutions −→qi and −→ri , if and only if rank (Γi) = |V | − 1.

Example 5.2 For the graph given in Figure 3, we obtain
−→
L (v1) =`

scm (Ø) scm (Ø)
´T

=
`

1 1
´T

,
−→
L (v2) =

`
7 4

´T
.

This leads to Γ1 =
ˆ

1 − 7·7
7

˜
, Γ2 =

ˆ
1 −4

˜
.

As rank (Γ1) = rank (Γ2) = 1 = |V | − 1, Equation (2) can be

solved: −→q1 =
`

7 1
´T

· α, −→q2 =
`

4 1
´T

· β. The mini-

mal repetition vectors are hence given by −→r1 =
`

7 7
´T

, −→r2 =`
4 4

´T
. In other words, both actors have to fire 7 times in hor-

izontal and 4 times in vertical direction.

6. CONCLUSION

In this paper, we developed a model of computation for sliding win-

dow algorithms. It has been shown, that application of existing data

flow models for such applications leads to difficulties and incomplete

descriptions. The new model WSDF abstracts important character-

istics of sliding window algorithms and thus leads to more precise

representations. As a first example for analysis, the WSDF balance

equation has been introduced in order to guarantee bounded token

accumulation on the graph edges.

In future work, we will develop an efficient analysis of required

buffer space for WSDF. First results have already been elaborated,

and will be presented in a future paper.

7. REFERENCES

[1] Joachim Keinert, Christian Haubelt, and Jürgen Teich, “Win-

dowed Synchronous Data Flow (WSDF),” Tech. Rep. 02-

2005, University of Erlangen-Nuremberg, Institut for Hardware-

Software-Co-Design, 2005.

[2] Edward Ashford Lee and David G. Messerschmitt, “Static

scheduling of synchronous data flow programs for digital sig-

nal processing,” IEEE Transactions on Computers, vol. C-36,

no. 1, January 1987.

[3] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peper-

straete, “Cyclo-static dataflow,” IEEE Transactions on Signal
Processing, vol. 44, no. 2, pp. 397–408, February 1996.

[4] Praveen K. Murthy and Edward A. Lee, “Multidimensional syn-

chronous dataflow,” IEEE Transactions on Signal Processing,

vol. Vol50, no. 7, pp. 2064–2079, July 2002.

[5] Hyunok Oh and Soonhoi Ha, “Fractional rate dataflow

model and efficient code synthesis for multimedia applications,”

LCTES-SCOPES, 2002.

[6] Dirk Stichling and Bernd Kleinjohann, “CV-SDF - a model

for real-time computer vision applications,” in WACV 2002:
IEEE Workshop on Applications of Computer Vision, Orlando,

FL, USA, December 2002.

III ­ 895

