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ABSTRACT 

We address a new representation of DCT/DFT matrices via 

one hybrid architecture. Based on a element inverse matrix 

factorization algorithm, we show that the DCT and DFT 

have a same recursive computational pattern, and we can 

develop an hybrid architecture by using some diagonal 

matrices.  

1. INTRODUCTION 

Discrete Cosine Transform (DCT) has found applications in 

signal classification and representation [1,2,3]. The DCT-II 

is a popular structure and it is usually accepted as the best 

suboptimal transformation that its performance is very close 

to that of the statistically optimal Karhunen-Loeve transform 

[3,4,5]. Furthermore, the discrete Fourier transform (DFT) is 

also a popular transformation for signal processing and 

communication [6,7,8]. To analyze these two different 

transforms, we now focus on the sparse matrix factorization 

of their transfer matrices.  

Otherwise, the analysis and decomposition of the sparse 

matrix wad demonstrated as a useful tool to develop the fast 

computations and character generalization [9,10,11]. 

Therefore, similar to the method in [9-12], the DCT-II and 

DFT matrices can be decomposed to one orthogonal 

character matrix and a special sparse matrix. In this form, 

the inverse of the sparse matrix is from block-wise inverse 

or element-wise inverse. Hence, the proposed method is 

named element inverse sparse matrix decomposition [10,11]. 

In this paper, we focus on the architecture of the sparse 

matrix decomposition and propose a hybrid architecture to 

joint the DCT and DFT together.  

2. ELEMENT INVERSE SPARSE MATRIX 

DECOMPOSITION FOR DCT-II MATRIX 

Similar to the definition of Jacket matrix [13,14], the inverse 

of a N-by-N sparse matrix is only from the element-wise 

inverse or block-wise inverse, we name it as element inverse 

sparse matrix.  

A typical DCT matrix is the DCT-II case, which is defined 

by  
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will focus on the DCT-II matrix and introduce a simple 

matrix factorization algorithm. First, the 2-by-2 DCT-II 
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where 2/1  can be considered as a special element inverse 

sparse matrix of order-1, its inverse if 2 , and )/cos( liCi
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is the cosine unit for DCT computations. Next, the 4-by-4 

DCT-II matrix is formed by  
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The row permutation matrix NPr  is defined by  

22Pr I  and 
NjiN pr ,Pr , 4N ,             (4) 
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Clearly, we have the block-wise inverse sparse matrix as  
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Generally, the permuted DCT-II matrix NC
~
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recursively formed by using  
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where 2/NB  can be calculated by 

2
,

),(

2
2

Nnm

nmf

N
N CB ,

),1,(2),()1,(

,12)1,(

mfnmfnmf

mmf          (9) 

where }2/,...,2,1{, Nnm .  The inverse form of (8) can 
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Furthermore, the submatrix  NB  can be represented by  

NNNN DCKB ,                             (11) 
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 Proof of (11): The N-by-N DCT-II matrix has the form  
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where 1iki , ,...}2,1,0{i . According to (9), the 

matrix NB  from NC 2  can be represented by  
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By taking (14) and (15) into (11), we have  
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The proof is completed.  

Thus the DCT-II matrix can be written by  
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And the general recursive form is given by  
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To simplify (18), we can rewrite it by using  
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shown as in Fig.1.   
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 Fig.1  Butterfly data flow diagram of the proposed computation of the N-by-N DCT-II matrix.   
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Fig.2  Butterfly data flow diagram of the proposed computation of the N-by-N DFT matrix. 

3. ELEMENT INVERSE SPARSE MATRIX 

DECOMPOSITION FOR DFT MATRIX 

The DFT is a Fourier representation of a given sequence 

)(mx , 10 Nm  and it is defined by 
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be denoted by 
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can write a permuted 4-by-4 DFT matrix by using  
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where 110 ,...,, N

N WWWdiagW , and W  is the complex 

unit for N2 -point DFT matrix. Similar to (17), we can 

rewrite the permuted DFT matrix by using  
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As a result, the general recursive form for DFT matrix can 

be represented by  
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Clearly, the form of (26) is the same as that of (19), where 

we only need to change lK  to lPr  and lD  to lW , with the 

parameters }2/,...,8,4,2{ Nl . The butterfly data flow 

diagram corresponding to (26) is shown as in Fig.2.  

4. CONCLUSION 

In this paper, we derive the recursive formulas for DCT-II 

and DFT matrices. The results show that the DCT-II and 

DFT matrices can be unified by using the same sparse 

matrix decomposition algorithm and recursive architecture 

within some characters changed.  

As illustrated in Fig.1, and Fig.2, we find that the DFT 

computation can be from the computation of the DCT matrix 

by replacing the submatrix ND  to NW , and the 

permutation matrix 
NPr  to 

NK . As a result, a simple 

generalized block diagram for DCT/DFT hybrid architecture 

and its fast algorithm can be shown as in Fig.3. In this figure, 

we joint DCT and DFT computations into one chip or one 

kind of processing architecture, where we use one switching 

box to control the output data flow. This result is useful to 

develop the united chip for video coding and digital 

modulations.   
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Fig.3. A simple DCT/DFT hybrid architecture.  
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