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ABSTRACT

This paper addresses the problem of designing linear-phase finite
impulse response digital filters using an L1 optimality criterion.
An efficient procedure for the design of such filters is proposed and
it is shown that the resulting filter has several desirable properties.
Specifically, the L1 filter possesses flat passbands and stopbands
while keeping the transition band comparable to that of the least-
squares filters. A comparison with existing methods is made, and
it is shown that our method is as efficient as the celebrated Remez
exchange algorithm.

1. INTRODUCTION

The problem of designing a linear-phase finite impulse response
(FIR) filter has long been recognized as an approximation prob-
lem, where an ideal frequency response, usually a discontinuous
one, is approximated by a finite number of smooth functions. The
design process of such filters typically consists of two contradic-
tory requirements [1]. On the one hand, the FIR filter should pre-
serve the discontinuous behavior of the ideal response, i.e. sharp
transitions, while on the other hand, the filter should be as flat as
possible in the passbands and stopbands. One way to handle this
tradeoff is by changing the measure of ”goodness”, under which
the approximation is carried out.

During the past forty years, numerous techniques for design-
ing digital FIR filters have been suggested. The majority of them
rely on one or a combination of the following optimality criteria:
least-squares (L2), minimax (L∞) and maximally flat [1]. At the
one extreme are the filters which are optimal in the minimax (also
called the Chebyshev norm) sense, and exhibit a sharp transition
from the passband to stopband, but result in an equiripple behav-
ior between them [2]. At the other extreme are the maximally flat
filters, which offer a very smooth passband and stopband at the
expense of a wide transition band [3]. The least-squares, another
common used criterion, may be viewed as a tradeoff between these
two extremes.

It is worthwhile to mention that other criteria for designing
FIR filters have also been proposed in the literature. For example,
Adams suggested a combined criterion for achieving a tradeoff be-
tween the least-squares and the minimax approaches [4]. The use
of Lp norm, 2 ≤ p ≤ ∞ has also been suggested [5].

Attempting to further explore meaningful criteria for design-
ing linear-phase FIR filters, we consider in this paper using the

This work was supported by the European Union’s Human Potential
Programme, under the contract HPRN-CT-2003-00285 (HASSIP).

weighted L1 norm for approximating discontinuous frequency re-
sponses (multiband filters in the general case). The use of L1 norm
as a measure of goodness is very common in several engineering
applications [6], but has not received much attention and serious
treatment in the filter design literature. In fact, we are aware of
very few works dealing with the L1 criterion [7, 8, 9]. In [7], the
design of high-order differentiators was considered, and in [9] an
arbitrary amplitude function was designed using the L1 criterion.
A general algorithm for the approximation under Lp was proposed
in [8], but convergence is not guaranteed for p = 1, and when ex-
ists is often very slow. In all three papers, however, the suggested
algorithms are based on a discretization of the original continu-
ous problem, which yields only an approximate solution. In order
for the approximation to be accurate, the sampling grid should be
made dense, which becomes computationally demanding. In addi-
tion, no clear justification was given for the use of the L1 measure
in the context of filter design. We therefore believe that the two
major reasons for the absence of L1 filters are a lack of motivation
and an efficient algorithm that solves the original problem. It is the
goal of this paper to provide a strong motivation for the use of the
L1 criterion in the design of FIR linear-phase filters, and to pro-
pose an efficient and accurate algorithm for computing the optimal
L1 filter.

The paper is organized as follows. In Section 2 we mathemat-
ically formulate the low-pass filter design problem as an approxi-
mation problem using the L1 criterion. We also motivate the use
of the L1 measure for handling the inherent tradeoffs in the prob-
lem. In Section 3 we give the necessary mathematical background
needed to characterize the best L1 filter. A simple Newton-type
algorithm is proposed in Section 4. Its convergence and compu-
tational complexity are discussed in Section 5, in which we also
compare its efficiency to the well known Remez exchange algo-
rithm for the design of minimax filters. Finally, a design example
is given in Section 6, with an emphasis on the properties of L1

filters with respect to other existing design methods.

2. PROBLEM FORMULATION AND MOTIVATION

We consider the problem of designing a low-pass N th order FIR
filter with impulse response {hn, 0 ≤ n ≤ N} to approximate the
ideal response

D(ω) =

{
1, |ω| ∈ [0, ωc],
0, |ω| ∈ (ωc, π].

(1)

The frequency response of the approximating filter, H(ω), is given
by the discrete time Fourier transform (DTFT) of its impulse re-
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sponse hn:

H(ω) =

N∑
n=0

hne−jwn. (2)

For simplicity, we consider symmetric odd length filters (known
as type-1 filters), in which case H(ω) can be written as

H(ω) = A(ω)e−jMω (3)

where M = N
2

, and A(ω) is the real-valued function

A(ω) = hM +

M∑
n=1

2hM−n cos(nω)

�
M∑

n=0

an cos(nω). (4)

Since D(ω) is zero-phase, approximating it by H(ω) is equivalent
to approximating it by A(ω), and then adding a delay of M taps
to A(ω) to make it causal. Thus, we wish to approximate D(ω)
by a linear combination of the M + 1 functions {cos(nω), n =
0, ..., M}.

We denote the error of the approximation by

E(ω, a) = A(ω) − D(ω). (5)

The approximation process of D(ω) by A(ω) is essentially a mini-
mization problem, where we wish to find the vector of coefficients,
a = (a0, ..., aM ), which minimizes some goodness criterion de-
fined on E(ω, a). The two most popular criteria for measuring the
approximation error are

1) The weighted least-squares error:

‖E(ω, a)‖2 =

∫
Ω

W (ω)|E(ω, a)|2dω. (6)

2) The weighted Chebyshev error:

‖E(ω, a)‖∞ = max
ω∈Ω

W (ω)|E(ω, a)|. (7)

The function W (ω) is a positive error weighting function, and Ω
stands for the union of passbands and stopbands (which are as-
sumed to be disjoint closed intervals in [0, π]).

Here, we propose minimizing the weighted L1 criterion

‖E(ω, a)‖1 =

∫
Ω

W (ω)|E(ω, a)|dω. (8)

The motivation for using this choice in connection with the filter
design problem is twofold. First, the L1 measure is very popular
in robust estimation methods. Therefore it is intuitively reasonable
to expect that when applied to the filter design problem, it would
tend to smear the transition band, while at the same time yield less
ripples in the passband and stopband. Indeed, as will be shown,
filters which are optimal in the L1 sense possess these properties,
and result in a flatter response than the least-squares, at the expense
of a small increase in the transition width. Second, one of the
main drawbacks of a least-squares approximation of discontinuous
functions is the Gibbs phenomenon. It turns out the approximation
under L1 results in a substantially smaller overshoot, leading to
better frequency response behavior [10].

Nevertheless, two main issues regarding the L1 norm form the
theoretical and algorithmic difference from the norm L2 and L∞,
and make its analysis more complicated and intriguing. First, like
the Chebyshev norm, the L1 measure is usually non-differentiable.
This questions the use of standard optimization approaches to min-
imize (8), as most of them use at least the gradient of the norm. In
the minimax case, this problem is bypassed via the alternation the-
orem, which gives rise to the efficient Remez exchange algorithm
[2]. The second issue is that of uniqueness. Unlike the L2 and
L∞ norms, the optimal solution may not be unique. Aside from
its theoretical importance, the non-uniqueness may affect the per-
formance as we discuss in the following section.

The next section addresses the problem of L1 differentiability,
where it is shown that in the case of the filter design problem,
the norm may be differentiated. This allows us to use gradient
methods. Moreover, it is shown that under certain circumstances,
the norm is even twice differentiable, enabling the use of second
order techniques such as the Newton method. The question of
uniqueness will be explored after we introduce the algorithm.

3. MATHEMATICAL BACKGROUND

3.1. Notations

Let Ω denote the set [0, ωp] ∪ [ωs, π]. For a vector a =
(a0, ..., aM ) ∈ R

M+1 we denote by Z(a) the set

Z(a) = {ω ∈ Ω|E(ω, a) = 0}. (9)

A zero z1 of E(ω, a) is called simple if ∂E(ω,a)
∂ω

|ω=z1 �= 0. The
sign function of E(ω, a) is defined as

sign(E(ω, a)) =

{
1 E(ω, a) > 0
0 E(ω, a) = 0

−1 E(ω, a) < 0.
(10)

3.2. Differentiability of the L1 Norm

In general the L1 norm is non-differentiable. However, the next
theorem states a condition under which the norm can be differen-
tiated at a point a:

Theorem 1 (First Derivative). If Z(a) has zero measure, then
the derivative of ‖E(ω, a)‖1 exists at a, and the components of its
gradient are given by

gn(a) �
∫ π

0

W (ω) cos(nω)sign(E(ω, a))dω. (11)

As a consequence of this theorem, it can be shown that the
L1 norm in (8) is differentiable for all a ∈ R

M+1, except for two
particular points, a = (1, 0, ..., 0), and a = (0, ..., 0); see [11].
However, these points refer to the degenerate case of a constant
filter, and therefore can be ignored. The theorem also shows that
the gradient at a depends on the sign function of the error at that
point, which depends on the set Z(a). Indeed, the set of zeros at
a plays an analogue role to the set of exterma in the Chebyshev
norm case.

The next theorem addresses the question of second differen-
tiability.

Theorem 2 (Second-Order Derivative). Let Z(a) = {z1, ..., zt}
be the set of zeros of E(ω, a) and assume that each zero is simple.
Then the Hessian matrix ‖E(ω, a)‖1 is given by

H(a) = AT D−1A (12)
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where A is a t × (M + 1) matrix whose ijth element is√
W (zi) cos((j − 1)zi), and D = diag{d1, . . . , dt} with di =

1
2
| ∂E(ω,a)

∂ω
|ω=zi |.

Using these two theorems, a Newton-type algorithm for mini-
mizing (8) is proposed in the following section.

4. THE WEIGHTED L1 ALGORITHM

The above discussion showed that differentiability (and sometimes
twice differentiability) of the L1 norm is guaranteed in the filter
design problem. As a result the minimizing filter may be obtained
by applying a modified Newton method [12]. A modified Newton
generates a sequence ak given by

ak = ak−1 − γk−1[Fk−1]−1gk−1, (13)

where gk−1 is the gradient at ak−1 given by (11), γk−1 is the step
size, and Fk−1 equals one of three matrices. It is equal to the
Hessian matrix, if it exists and is positive definite, while if it is not
positive definite, then the identity matrix multiplied by a positive
scalar is added to it to form Fk−1. In case the Hessian does not
exist it equals the identity matrix to ensure a descent direction.

The following steps describe the algorithm for computing the
best weighted L1 approximation to D(ω) on Ω.

Step 1 - Initialization. Determine an initial vector a1 ∈
R

M+1,ε > 0, 0 < σ < 1/2, 0 < β < 1. Set k = 1. The
initialization of a1 is described in [11].

Step 2 - Positive-definite matrix determination. Form the
matrices Ak and Dk, as defined in theorem 2, and determine a
positive definite (M + 1)× (M + 1) matrix Hk according to one
of the following cases. If t = 0 or Dk is singular, then set Hk = I .
If t ≥ M + 1, Dk is non-singular, and rank(Ak) = M + 1, then
set Hk = (Ak)T (Dk)−1Ak. If t > 0, Dk is non-singular and
rank(Ak) < M + 1, then set Hk = (Ak)T (Dk)−1Ak + λkI ,
where λk > 0 is given.

Step 3 - Descent Direction. Compute the (M + 1)-
dimensional vector gk whose nth component is given by (11).
Determine dk, the current descent direction, which is the unique
solution of

Hkdk = −gk. (14)

Step 4 - Stopping Criterion. If |(dk)T gk| < ε then stop.
Step 5 - Step Size. Determine the step size γk to be

max{1, β, β2, ...} such that

T (ak, γk) ≥ σ, (15)

where

T (ak, γk) =
‖E(ω, ak + γkdk)‖1 − ‖E(ω, ak)‖1

γk(dk)T gk
. (16)

Note that the step size is selected in such a way that the weighted
L1 norm of the error is decreased.

Step 6 - Updating. Set ak+1 = ak + γkdk, k = k + 1, and
go to Step 2.

In the next section, we discuss convergence issues, and the
computational complexity of the above algorithm. In addition,
a characterization of the unique optimal solution is given, which
is reminiscent of the alternation theorem for the minimax design
problem.

5. CONVERGENCE, UNIQUENESS AND
COMPUTATIONAL COMPLEXITY

We start by summarizing the convergence properties of the our
algorithm. The proof of the following theorem is given in [11].

Theorem 3 (Global and Local Convergence). The proposed al-
gorithm is globally convergent. Furthermore, if the optimal so-
lution is unique, then the algorithm has a second order rate of
convergence.

The Remez algorithm for minimax filters also is also globally
convergent and admits a second order rate of convergence [13].
Thus, when uniqueness holds in our problem our algorithm and the
Remez mehtod are comparable. The next theorem (whose proof
may be found in [11]), which may be viewed as the L1 analogue of
the alternation theorem, states a necessary and sufficient condition
on the optimal solution to be unique.

Theorem 4 (Uniqueness). Let A(ω) be a best (but not necessarily
unique) weighted L1 approximation to D(ω) on Ω of degree M .
Then E(ω, a) changes sign either M or M + 1 times in Ω. The
number of sign changes is M +1 if and only if A(ω) is the unique
best approximation.

Indeed, in our problem the number of the sign changes of the
error function plays the role of extrema in the minimax case.

Finally, we note that the computational complexity of the Re-
mez algorithm is dominated by the solution of a linear system of
equations. It was shown in [2] that for equiripple filters, the solu-
tion of the linear system may be efficiently found in O(M2) oper-
ations (instead of O(M3)). The complexity of our method is also
determined by the solution of a linear system of equations (Step
3). We have developed a method, described in [11], for solving
our linear system in an O(M2) when the Hessian matrix is posi-
tive definite. Simulation results show that this is often the case. A
more thorough complexity analysis is provided in [11].

6. SIMULATIONS RESULTS

In this section, we compare our approach for L1 filters with exist-
ing methods. The L1 algorithm was coded in Matlab, and simula-
tions show that its running time may be compared with the Remez
exchange algorithm. We consider the design of a low-pass filter

D(ω) =

{
1, ω ∈ [0, 0.63π]
0, ω ∈ (0.63π, π].

(17)

by approximating it with a type 1 linear-phase FIR filter of order
N = 42. We define the passband region to be [0, 0.6π] and the
stopband region as [0.66π, π], with the weighting function equal
one. The approximating filters using various methods are shown
in Figs. 1-2, in a logarithmic scale.

The figures suggest that the L1 filters have the following at-
tractive properties. In most of the passband and stopband region it
admits a higher degree of flatness than the least-squares method,
and much higher than the minimax approach, see Fig. 3 for the
magnified passband. The maximum deviations in both the stop-
band and passband regions are slightly higher than that of the least-
squares and the minimax, and are much smaller than that of the
maximally flat filter, whose transition band is very wide. In addi-
tion, the maximum deviation occurs very close to the discontinuity
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without resulting in large ripples as in the least-squares filter. Thus,
the L1 filter may provide a suitable tradeoff between the minimax
and maximally flat filters, in applications where flat passbands and
stopbands are required (corresponding to maximally flat filters),
and still a reasonable transition region should be kept.

7. CONCLUSIONS

An efficient algorithm for the design of linear-phase FIR filters,
which are optimal in the L1 sense, has been proposed. The
method, which is a modified version of the Newton algorithm,
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Fig. 3. Enlarged passbands for N = 42.

often enjoys a fast convergence rate, which is the same rate of
convergence as the Remez exchange algorithm for the design of
equiripple filters. In contrast to the pure Newton method, however,
it does not require the computation of second derivatives, and can
be made very efficient in the case of filter design. Simulation re-
sults have been demonstrated, showing that the L1 filters may be
a good choice when, for example, bandlimiting low-pass signals.
The method was described for designing low-pass filters, however,
extensions to other type of filters is possible.
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