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ABSTRACT

The Higher-Order SVD (HOSVD) is a generalization of the SVD
to higher-order tensors (ie. arrays with more than two indexes) and
plays an important role in various domains. Unfortunately, the com-
putational cost of this decomposition is very high since the basic
HOSVD algorithm involves the computation of the SVD of three
highly redundant block-Hankel matrices, called modes. In this pa-
per, we present an ultra-fast way of computing the HOSVD of a
third-order structured tensor. The key result of this work lies in the
fact it is possible to reduce the basic HOSVD algorithm to the com-
putation of the SVD of three non-redundant Hankel matrices whose
columns are multiplied by a given weighting function. Next, we
exploit an FFT-based implementation of the orthogonal iteration al-
gorithm in an adaptive way. Even though for a square (I × I × I)
tensor the complexity of the basic full-HOSVD is O(I4) and O(rI3)
for its r-truncated version, our approach reaches a linear complexity
of O(rI log2(I)).

1. INTRODUCTION

The subject of multilinear decomposition is now mature [1,2]. There
are essentially two families. The first one is known under the
name of CANDECOMP/PARAFAC (CANonical DECOMPosition
or PARAllel FACtors model) and was independently proposed in
[6, 7]. This decomposition is very useful in several applications and
is relied to the tensor rank [9]. The second one is related to the mul-
tidimensional rank [8] and is known under the name of Tucker de-
composition [5]. This decomposition is a more general form which
is often used. Orthogonality constraints are not required in the gen-
eral Tucker decomposition but if needed one can refer to the Higher-
Order Singular Value Decomposition (HOSVD) [8] or multilinear
SVD.

The HOSVD is a generalization of the SVD to higher-order ten-
sors (ie. arrays with more than two indexes). This decomposition
plays an important role in various domains, such as harmonic re-
trieval [3], image processing, telecommunications, biomedical appli-
cations (magnetic resonance imaging and electrocardiography), web
search [13], computer facial recognition [11], handwriting analy-
sis [12], statistical analysis by Independent Component Analysis
(ICA) [8].

In [8], it has been shown that the HOSVD of a third-order tensor
involves the computation of the SVD of three matrices called modes.
As a consequence, the computational cost of this algorithm is very
high. In the case of structured tensors, these modes are highly re-
dundant matrices (ie. many columns are repeated). In this paper, we
propose a ultra-fast implementation of the r-truncated HOSVD for
structured tensors which takes the redundant structure of each mode

into account. The key result of this work lies in the fact that it is pos-
sible to reduce the basic HOSVD algorithm to the computation of the
SVD of three non-redundant (all columns are different) Hankel ma-
trices whose columns are multiplied by a given weighting function.
Next, we exploit the orthogonal iteration algorithm in an adaptive
way. Even though for square (I× I× I) tensors the complexity of the
basic full-HOSVD is O(I4) and O(rI3) for its r-truncated version,
our approach reaches a linear complexity of O(rI log2(I)).

2. PRELIMINARIES IN MULTILINEAR ALGEBRA

2.1. Mode of a tensor

There are several ways to represent a I1 × I2 × I3 third-order
complex-valued tensor A as a collection of matrices.

Definition 1 We define the modes (also called ”matrix unfoldings”)
A1, A2, A3 as follows:

[A1]i1,(i3−1)I3+i2 = [A]i1i2i3 , (1)

[A2]i2,(i3−1)I3+i1 = [A]i1i2i3 , (2)

[A3]i3,(i1−1)I1+i2 = [A]i1i2i3 . (3)

where we have denoted the entries of A by [A]i1i2i3 with is ∈ [0 :
Is−1]. These matrices are of dimension (I1× I2I3), (I2× I3I1), (I3×
I1I2), respectively.

The dimensions of the vector spaces generated by the columns of
the modes of A are called column rank (or 1-mode rank) R1, row
rank (or 2-mode rank) R2 and 3-mode rank R3, respectively.

Definition 2 A third-order tensor whose s-mode (or multidimen-
sional) rank is equal to Rs, s ∈ [1 : 3], is called a rank-(R1,R2,R3)
tensor.

2.2. Multilinear SVD (HOSVD)

Theorem 1 (Third-Order SVD [5, 8]) Every I1 × I2 × I3 tensor A
can be written as the product:

A = S ×1 U (1)×2 U (2) ×3 U (3) (4)

in which ×s represents the Tucker s-mode product [8], U (s) is an uni-
tary Is× Is matrix and S is an all-orthogonal and ordered I1× I2× I3
tensor. All-orthogonality means that the matrices Sis=α, obtained by
fixing the s-th index to α, are mutually orthogonal w.r.t. the stan-
dard inner product. Ordering means that ‖Sis=0‖ � ‖Sis=1‖ � . . . �

‖Sis=Is−1‖ � 0 for all possible values of s. The Frobenius-norms
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‖Sis=i‖, symbolized by σ
(s)
i , are the s-mode singular values of A and

the columns of U (s) are the s-mode singular factors.

This decomposition is a generalization of the SVD because the
diagonality of the matrix containing the singular values, in the matrix
case, is a special case of all-orthogonality. Also, the HOSVD of
a second-order tensor (matrix) yields the matrix SVD, up to trivial
indeterminacies. The matrix of s-mode singular factors, U (s), can be
found as the matrix of left singular factors of the mode As, defined
in (1)–(3). The s-mode singular values correspond to the singular
values of this matrix unfolding. Note that the s-mode singular factors
of a tensor, corresponding to the nonzero s-mode singular values,
form an orthonormal basis for its s-mode vector subspace, like in the
matrix case.

The core tensor S can then be computed (if needed) by bringing
the matrices of s-mode singular factors to the left side of equation
(4):

S = A ×1 U (1)H
×2 U (2)H

×3 U (3)H
(5)

where (.)H denotes the complex conjugate.

2.3. Mode decompositions

Expression (4) can be written in terms of modes as follows:

A1 = U (1)S1

(
U (3) ⊗U (2)

)T
,

A2 = U (2)S2

(
U (3) ⊗U (1)

)T
,

A3 = U (3)S3

(
U (1) ⊗U (2)

)T
,

in which ⊗ denotes the Kronecker product and S1, S2 and S3 denote
respectively the first, second and third mode of the core tensor S .
Note that the columns of U (s) span the space generated by the s-
mode vectors of A .

3. COMPLEXITY OF FULL AND TRUNCATED HOSVD

Let N = I1 + I2 + I3 − 1, Q = I1I2I3 and I =
[N+1

3

]
. The computa-

tional costs of the various algorithms presented below are related to
the flop (floating point operation) count. For example, a dot product
of I-dimensional vectors involves 2I flops (I multiplications plus I
additions).

3.1. Computation of the full basic HOSVD

The calculation of the full basic HOSVD of tensor A requires the
computation, for all s ∈ [1 : 3], of the left factor U (s) in the full SVD
of matrix As, as defined above. Once the three matrices U (s) have
been obtained, the tensor S can be computed by means of the Tucker
product

S = A ×1 U (1)H
×2 U (2)H

×3 U (3)H
. (6)

According to [4, pp. 253–254], the average computational cost
of the full SVD of an n× l matrix with n < l is kfn2l flops, where
the constant kf depends on the SVD algorithm (e.g. Golub-Reinsch
or R-SVD). Here, only the left term of the SVD needs to be com-
puted, which can be achieved faster than a complete SVD (i.e. with
a lower value of kf). Besides, the matrix A1 has n = I1 rows and
l = I2I3 columns. Assuming that I2I3 is often greater than I1, the
computational cost of the SVD of A1 is kfI2

1 I2I3 flops.

The computational costs of the full HOSVD are summarized in
table 1. In particular, the maximal complexity over all values of
I1, I2, I3 satisfying N = I1 + I2 + I3 −1 is obtained for square tensors
(I1 = I2 = I3 = I) and equals (3k f +6)I4.

3.2. Computation of the truncated HOSVD

In many applications, we are interested in computing the HOSVD
truncated at orders (r1,r2,r3) (rs is often supposed to be much lower
than Is). Let r = 1

3 (r1 + r2 + r3). This truncated HOSVD can be
obtained in the same way as the full HOSVD, except that the three
SVD involved in its computation are truncated at orders rs. Besides,
the truncated SVD of an n× l matrix can be computed faster than its
full SVD, by means of the orthogonal iteration method [4, pp. 410–
411] for instance. The average computational cost of this truncated
SVD is ktrsnl, where the constant kt depends on the algorithm (kt is
generally greater than kf). Therefore, applied to matrix As, its cost
is O(rsI3) flops for square tensors. Note that we assume (1) Is �
log2(Is) and (2) log2(Is) is the same order as rs. The computational
costs of the r-truncated HOSVD are summarized in table 1.

Table 1. Full and r-truncated HOSVD Algorithms
Operation Full r-truncated HOSVD
SVD of A1 kfI1Q ktr1Q
SVD of A2 kfI2Q ktr2Q
SVD of A3 kfI3Q ktr3Q

Tucker product 6IQ 6rQ
Total (3kf +6)IQ (3kt +6)rQ

4. FAST ALGORITHMS FOR HANKEL-STRUCTURED
TENSORS

This section is dedicated to Hankel-structured tensors but other
structures as for instance circulant matrices can be exploited in a
similar way.

4.1. Definition of an Hankel-structured tensor

A third-order I1× I2× I3 Hankel-structured tensor is defined accord-
ing to:

[H ]i1i2i3 = x[i1 + i2 + i3] (7)

where x[n] is the n-th sample of the analyzed signal and is ∈ [0 :
Is −1] for s ∈ [1 : 3].

4.2. Compressed and windowed modes

The structure of the considered tensor induces a strong redundancy
in its modes or in other words, there are several columns in the modes
which are repeated. Consequently, we introduce the compressed s-
mode, denoted by Hs in the following manner:

Hs = AsJs (8)

where Js is a linear transformation which associates a redundant
block-Hankel matrix As to a non-redundant Hankel matrix Hs. For
instance, we give the following example for the 4×5×3 1-mode,

⎛
⎜⎝

0 1 2 3 4 1 2 3 4 5 2 3 4 5 6
1 2 3 4 5 2 3 4 5 6 3 4 5 6 7
2 3 4 5 6 3 4 5 6 7 4 5 6 7 8
3 4 5 6 7 4 5 6 7 8 5 6 7 8 9

⎞
⎟⎠ (9)
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where for simplicity we have denoted x[n] by its index n. In addition,
we have underlined the common columns. Consequently, the matrix
Js is determined so as to produce the following ”compressed” 1-
mode: ⎛

⎜⎝
0 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9

⎞
⎟⎠ . (10)

Remark the Hankel structure of matrix (10). If we note nc(.) the
number of columns, it comes:

nc(Hs) = ∑
s′ �=s

Is′ −1 < nc(As) = ∏
s′ �=s

Is′ (11)

and thus Hs has less columns than As. Decreasing the column di-
mension of the mode modifies the dominant singular space, denoted
by R(.). In other words, we have R(Hs) �= R(As). So, for a given
non-deficient matrix, Ds, we have to satisfy:

R(HsDs) = R(As). (12)

Toward this end, consider the correlation matrix of the s-mode:
C(s) = As AH

s . For the 1-mode case, we have:

[C(1)]k,l =
I2−1
∑

i2=0

I3−1
∑

i3=0
[H ]k,i2,i3 [H ∗]l,i2,i3

=
I2−1
∑

i2=0

I3−1
∑

i3=0
x[k + i2 + i3]x∗[l + i2 + i3].

It can be noticed that some terms are redundant in this last equation.
In order to remove this redundancy, we obtain after some derivations:

[C(1)]k,l =
I2+I3−2

∑
i=0

d(I2,I3)[i+1]x[k + i]x∗[l + i]

where:

d(I2,I3)[i] =

⎧⎪⎨
⎪⎩

i if 1 ≤ i < min(I2, I3)
min(I2, I3) if min(I2, I3) ≤ i < max(I2, I3)
I2 + I3 − i if max(I2, I3) ≤ i < I2 + I3

0 elsewise.

The weighting function i 	→ d(I2,I3)[i] is plotted in figure 1.

�

�
max(I2, I3)min(I2 , I3) I2 + I3

min(I2 , I3)

0

d(I2 ,I3)[i]

i

Fig. 1. Weighting function d(I2,I3)[i]

It represents the number of times each column of the 1-mode is
repeated. For instance, in the example of matrix (9), the weights are
{1,2,3,3,3,2,1}.

The correlation matrix of the 1-mode can then be rewritten as a
function of the compressed 1-mode H1:

[C(1)]k,l =
N−I1−1

∑
i=0

d(I2,I3)[i+1] [H1]k,i [H
∗
1 ]l,i.

Then define the (N − I1)× (N − I1) diagonal matrix D1,whose diag-

onal coefficients are [D1](i,i) =
√

d(I1,I2)[i]. We obtain:

C(1) = H1 D2
1 HH

1 . (13)

Consequently, the left singular vectors of matrix A1 can be
obtained as the left singular vectors of matrix H1 D1 and thus
R(H1D1) = R(A1). In a similar way, we can build D2 and D3 such as
R(H2D2) = R(A2) and R(H3D3) = R(A3). Obviously, we have:

nc(HsDs) = nc(Hs) < nc(As). (14)

Thus the SVD of HsDs can be computed much faster than that of
As. The fast algorithm for computing the full or truncated HOSVD
of tensor H is summarized in table 2.

Table 2. Fast HOSVD algorithm
Operation Full cost Truncated cost

SVD of H1 D1 kfI2
1 (I2 + I3) ktr1I1(I2 + I3)

SVD of H2 D2 kfI
2
2 (I1 + I3) ktr2I2(I1 + I3)

SVD of H3 D3 kfI
2
3 (I1 + I2) ktr3I3(I1 + I2)

Tucker product 6IQ 6rQ

It can be noticed that the most computationally demanding step
is now the Tucker product1. If tensor S does not have to be com-
puted, then the complexity of the full HOSVD fast algorithm is al-
ways lower than 6kfI3, and that of the truncated HOSVD fast algo-
rithm is lower than 6ktrI2. So, the compression and weighting of the
modes allow a reduction of the complexity of one order of magnitude
with respect to the basic HOSVD and the r-truncated HOSVD.

4.3. Implementation with Fast Fourier Transforms

To further reduce the complexity, we use the fact that the product
between a Hankel matrix and a vector can be efficiently computed
by means of Fast Fourier Transforms (FFT) [4, pp. 201–202].

By introducing those fast products into the orthogonal iteration
method, the cost of the full SVD of a n× l matrix with n < l and
N = n+ l−1 is reduced to k1nN log2(N)+k2n3, where the constant
k1 is related to the Hankel matrix / vector products, and the constant
k2 is related to the QR factorizations (see [4, pp. 410–411] for more
details). In the same way, the cost of a rank-r truncated SVD is
k1rN log2(N)+k2nr2.

The ultra-fast algorithm for computing the full or truncated
HOSVD of tensor H is summarized in table 3. Again, it can be
noticed that the most computationally demanding step is the Tucker
product2. If tensor S does not have to be computed, then the
complexity of the full HOSVD fast algorithm is always lower than
9k1I2 log2 I +3k2I3, and that of the truncated HOSVD fast algorithm
is lower than 9k1rI log2 I +3k2r2I. Therefore we achieve one more
order of magnitude of complexity reduction.

1In fact, the redundancy in H implies that the Tucker product involves
several times the same matrix/vector products. Therefore it can be computed
faster than in the non-structured case. However this does not lead to a signif-
icant reduction of the complexity.

2The redundancy in H also implies that the Tucker product involves sev-
eral times the same Hankel matrix / vector products. Therefore it can be
computed even faster than in the fast algorithm. Unfortunately, this does not
lead to a significant reduction of the complexity either.
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Table 3. Ultra-fast HOSVD algorithm
Operation Full cost Truncated cost

SVD of H1D1 3k1I1I log2I +k2I3
1 3k1r1I log2I +k2r2

1I1
SVD of H2D2 3k1I2I log2I +k2I3

2 3k1r2I log2I +k2r2
2I2

SVD of H3D3 3k1I3I log2I +k2I3
3 3k1r3I log2I +k2r2

3I3
Tucker product 6IQ 6rQ

5. ADAPTIVE SIGNAL PROCESSING

In this section, tensor H (t) is supposed to have slow time variations,
and our objective is to efficiently update its HOSVD.

A very classical approach for tracking the SVD of a time-varying
matrix consists in interlacing the update of the data with one or a
few steps of a standard SVD algorithm, such as the orthogonal iter-
ation method [10]. Following this idea, an efficient way of updating
U (s)(t) consists in replacing the exact SVD of As(t) in table 1 by one
step of the orthogonal iteration method:

• Z(s)(t) = As(t)As(t)HU (s)(t −1)

• U (s)(t)R(s)(t) = Z(s)(t).

The first operation is a matrix product; the second one is a QR-
factorization. In the case of the full HOSVD, the QR factorization
can be computed by means of the Householder QR method [4, pp.
224–225], or the Fast Givens QR method [4, pp. 228–229]. Its cost
is 4

3 I3
s flops. In the case of the truncated HOSVD, the fastest ap-

proach is the Fast Givens QR method, whose cost is 2r2
s Is flops. The

overall cost of the sequential HOSVD algorithm obtained in this way
is of the same order as that of the basic HOSVD algorithm, with a
smaller multiplicative constant.

According to table 4, we can say that for square tensors the com-
putational cost of the basic HOSVD is O(I4) and that of the r-
truncated version is O(rI3), whereas the ultra-fast truncated HOSVD
derived in the same way has a final complexity of O(rI log2(I))
(since we consider that 270log2(I) � 6r).

Table 4. Complexities of the sequential HO-SVD algorithms
Algorithm Full cost Truncated cost

Basic HO-SVD 6I4 12rI3

Fast HO-SVD 16I3 24rI2 +6r2I
Ultra-fast HO-SVD 270I2 log2I +4I3 270rI log2I +6r2I

6. NUMERICAL SIMULATIONS

In this part, we represent on figure 2 the complexity of the full Basic
HOSVD, the r-truncated HOSVD, the fast (with compressed and
windowed modes) r-truncated HOSVD and the sequential ultra-fast
r-truncated HOSVD. The methodology is the following: we fix the
two first dimensions of the tensor and we vary the last one.

As we can see a large complexity gain can be achieved. We
note that the most important part of the complexity gain is obtained
through the SVD of the compressed-windowed Hankel-structured
modes. In addition, the adaptive/sequential approach is very attrac-
tive for tensors of very large dimensions.
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Fig. 2. Comparison of the complexities, (a) 499× 699× i3 tensor
where i3 ∈ [0 : 999] and r = 30 and (b) 99× 99× i3 tensor where
i3 ∈ [0 : 99] and r = 10.

7. CONCLUSIONS

In this paper, we decreased the computational cost of the r-truncated
HOSVD of structured tensors. Our solution is based on the fact that
the HOSVD can be reduced to the SVD of three non-redundant (all
columns are different) Hankel matrices whose columns are multi-
plied by a given weighting function. This operation is a first step
which allows the gain of one order of magnitude. To further reduce
the complexity, we efficiently compute the products between Hankel
matrices and vectors by means of Fast Fourier Transforms. Finally,
in an adaptive context, we propose a sequential implementation of
the SVD by means of the orthogonal iteration algorithm. Our fastest
implementation of the HOSVD has a complexity of O(rI log2(I)) in
the case of square (I × I × I) tensors.
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