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ABSTRACT

We consider the problem of estimating a fractional Brown-
ian motion known only from its noisy samples at the inte-
gers. We show that the optimal estimator can be expressed
using a digital Wiener-like filter followed by a simple time-
variant correction accounting for nonstationarity.

Moreover, we prove that this estimate lives in a sym-
metric fractional spline space and give a practical imple-
mentation for optimal upsampling of noisy fBm samples by
integer factors.

1. INTRODUCTION

Natural signals are usually not stationary, but often present
some degree of statistical scale invariance, at least over a
significant scale range. An interesting class of stochastic
processes that exhibit such fractal behavior is fractional Brow-
nian motion (fBm) [1, 2]. The defining properties of fBm
are: 1) full statistical scale invariance; 2) stationarity of the
increments; and 3) global Gaussian statistics.

When a signal is Gaussian and stationary, the optimal
method for estimating it from its (Gaussian stationary) noisy
uniform samples, is to filter these samples (digitally) and in-
terpolate them in the function space generated by the integer
shifts of the autocorrelation of the underlying process [3].

Unfortunately, in the case of non-stationary signals such
as fBm, this approach is not valid. The goal of this paper is
to derive the optimal estimator for such processes and to in-
vestigate the extent to which the classical signal processing
techniques are still applicable.

We will see that the full denoising process involves a
stationary part—digital filtering and interpolation in a frac-
tional spline space—and a non-stationary part which, in par-
ticular, ensures that the estimate vanishes at t = 0, just like
an fBm [4]. Interestingly, we will establish that the best es-
timation of an fBm given its noisy samples is a fractional
spline of degree 2γ where γ is the Hurst exponent of the
fBm. In particular, we will recover a classical result by
Paul Lévy that states that the best interpolation (noiseless

case) of the usual Brownian motion (γ = 1/2) is piecewise-
linear [5].

2. CHARACTERIZATION OF FRACTIONAL
BROWNIANMOTIONS

An fBm Bγ(t) with Hurst exponent 0 < γ < 1 is a zero-
mean Gaussian process whose correlation is given by:

�{Bγ(t)Bγ(t′)} =
Cγ

2
(|t|2γ + |t′|2γ − |t − t′|2γ

)
(1)

where �{·} is the expectation operator and Cγ a positive
constant [1]. It is the unique scale invariant1 Gaussian pro-
cess whose variogram �{|Bγ(t)−Bγ(t′)|2} is a function of
(t−t′) alone [6]. A direct consequence of (1) is �{Bγ(0)2} =
0, which implies that Bγ(0) = 0 almost surely—i.e., with
probability one.

An fBm can also be expressed as a stochastic integral
(that can be understood either in the Itô formulation [7], or
in the sense of generalized stochastic processes of Gel’fand
and Vilenkin [8]) through the use of a normalized 2 Gaussian
white noise processW (ω) [9]:

Bγ(t) =
ε2

γ√
2π

∫
ejωt − 1
|ω|γ+1/2

W (ω) dω,

where ε2
γ = Γ(2γ + 1) sin(πγ)Cγ .

This expression indicates that an fBm essentially be-
haves like a stationary processwhose PSDwould be ε2

γ/|ω|2γ+1.
More specifically, we can prove that the integer samples of
an fBm are whitened by the digital filter whose discrete-
time Fourier transform is

∣∣2 sin ω
2

∣∣γ+1/2

εγ

√
Aγ−1/2(ejω)

,

where Aγ−1/2(ejω) is the autocorrelation filter of a frac-
tional spline of degree γ − 1/2, the expression of which is

1The rescaled stochastic process Bγ(at) follows the same probability
law as the process aγBγ(t) for any positive real a.

2i.e., �{W (t)W (t′)} = δ(t − t′).
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given in the next section—see (5). Consequently, we can
generate a good approximation of the samples of an fBm by
filtering a discrete white noise with the inverse of the above
filter.

3. SYMMETRIC FRACTIONAL B-SPLINES

Given uniform samples f(n) of a continuous-time function
f(t), it is customary to built an interpolated version of these
samples that would be close to f(t) using a Shannon-like
expression

fest(t) =
∑
k∈Z

cnϕ(t − k) (2)

whereϕ(t) is some basis function (such as the sinc-function3)
and the coefficients cn are chosen so as to fit the samples
(interpolation condition): i.e., fest(k) = f(k) [10]. When
the samples are noisy, it is better to relax the interpolation
condition and use a quasi-interpolation instead. The main
point however is that (2) remains valid.

B-splines are an attractive choice for ϕ(t) because of
their excellent approximation and multiresolution proper-
ties [10]. A superset of the natural B-splines has been de-
fined in [11]. Here, we will be concerned only with sym-
metric fractional B-splines which can be defined as:

βα
∗ (t) =

∫ ∞

−∞
| sincF |α+1ej2πFt dF. (3)

Indeed, we will see in the next section that, when f(t) is an
fBmwith Hurst exponent γ, then the optimal quasi-interpolation
of f(t) given its noisy samples can be expressed as (2) with
ϕ(t) = β2γ

∗ (t).
Symmetric fractional B-splines satisfy an M -scale dif-

ference equation (for any integer M ≥ 2) which is easily
expressed in Fourier variables:

β̂α
∗ (ω) =

∣∣∣∣ sin ω
2

M sin ω
2M

∣∣∣∣
α+1

β̂α
∗
( ω

M

)
. (4)

This property is especially useful for defining fast multi-
scale algorithms (wavelet transforms, scale changes) as we
will see in the sequel.

Workingwith B-splines involvesmanipulating spline au-
tocorrelation sequences defined by their discrete-time Fourier
transform

Aα(ejω) =
∑
k∈Z

∣∣β̂α
∗ (ω + 2kπ)

∣∣2 (5)

for which a fast computation is available [12].

3By definition here, sinc x =
sinπx

πx
.

4. OPTIMAL ESTIMATION OF AN FBM

Our problem of interest is the estimation of an fBm Bγ(t)
from a series of noisy samples yk = Bγ(k) + N(k) for all
k ∈ Z where {N(k)}k∈Z is a Gaussian stationary discrete
noise, independent from Bγ(t). The best estimate can be
expressed formally in a Bayesian setting as

Bγ,est(t) = �
{
Bγ(t)

∣∣{yk}k∈Z

}
.

It is the one that minimizes the expected square error�{|Bγ(t)−
Bγ,est(t)|2}.

We denote by rk the autocorrelation sequence of the
noise; i.e., rk = �{N(k)N(0)} and byR(ejω) =

∑
k rke−jkω

its discrete-time Fourier transform.

Theorem 1 The optimal estimate ofBγ(t), given yk = Bγ(k)+
N(k), is a fractional spline of degree 2γ:

Bγ,est(t) =
∑
k∈Z

ckβ2γ
∗ (t − k) (6)

where the coefficients ck are given by:

ck = hk ∗ yk − λhk ∗ rk. (7)

The scalar quantity λ and the filter H(z) =
∑

k∈Z
hkz−k

are specified by

H(ejω) =
1

∣∣2 sin ω
2

∣∣2γ+1 R(ejω)
ε2

γ

+ Aγ−1/2(ejω)

λ =
∑

k hk ∗ yk β2γ
∗ (k)∑

k hk ∗ rk β2γ
∗ (k)

The proof is somewhat technical and will be given else-
where [4]. This result shows that the optimal estimation
of the non-stationary signalBγ(t) is not a mere filtered ver-
sion of the yk’s, as it would be the case in the stationary
case. However, the difference is not so large because, as
is apparent from (7), the first term expressing ck is indeed
a filtered version of the measurements yk. The presence
of the second term, on the other hand, is a consequence of
non-stationarity, and, in particular, of the fact that Bγ(t) is
known to vanish at t = 0.

Note however, that if we, quite reasonably, assume that
the autocorrelation of the noise is localized around 0 (in the
limit white noise case, we would even have rk = 0 for all
k �= 0) then this second term is guaranteed to vanish when
k → ∞ because hk is itself a localized filter [4]. Thus,
for large values of t, the best estimate of an fBm is simply
a filtered version of its noisy samples, as in the stationary
case.

A side result of this theorem is the quality of the esti-
mation, which can be expressed as the expectation of the
square error between the fBm and its estimate.
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Theorem 2 Theminimal expected square error betweenBγ(t)
and its estimation based on the noisy samples yk = Bγ(k)+
N(k) is given by

�{|Bγ(t) − Bγ,est(t)|2} = σ2
0(t) − ρ2(t)σ2

0(0) (8)

where4

σ2
0(t) =

Cγ

2

∑
k∈Z

|t − k|2γhk ∗ β2γ
∗ (t − k)

ρ(t) =
∑

k hk ∗ rk β2γ
∗ (t − k)∑

k hk ∗ rk β2γ
∗ (k)

5. IMPLEMENTATION—EXAMPLE

Let M be some integer greater than one. We present here
an algorithm for estimatingBγ(t) at the sampling times t =
n/M given its noisy samples Bγ(k) + N(k) with the same
hypotheses as in Section 4. From Theorem 1 we know that
the optimal estimate of Bγ(nM) are Bγ,est(n/M). Based
on (6), the system that transforms ck into Bγ,est(n/M) is
thus an upsampler byM followed by filtering byGM (z) =∑

k β2γ
∗ (k/M)z−k.

By using the M -scale relation (4), it is a simple matter
to show that

GM (ejω) = M

∣∣∣∣ sin Mω
2

M sin ω
2

∣∣∣∣
2γ+1

Aγ−1/2(ejω).

The full estimation process indicating how to compute
Bγ,est(k) from yk = Bγ(k) + N(k) is shown in Fig. 1.

yk H(z)

�

�

λhk ∗ rk

+
−

��
��M

↑ GM (z)�ck Bγ,est( k
M )

Fig. 1. M -upsampling algorithm of a noisy fBm of Hurst
exponent γ. See text for the definition of the expressions
definingH(z), λ, rk and GM (z).

Since it is inpractical to assume an infinite nontrivial se-
quence of samples, the implementation of this scheme has
to make an approximation, namely that the missing sam-
ples can be obtained by periodic repetition of the known
samples (periodic boundary conditions). Then, the actual
implementation of all the filtering operations can be done
using a discrete Fourier transform.

An example of processing applied to a simulated fBm,
generated as specified in Section 2, is given in Fig. 2.

4For the sake of simplicity, we have written hk ∗ β2γ
∗ (t − k) to mean

�
l hlβ

2γ
∗ (t − (k − l))
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Fig. 2. Optimal upsampling by M = 10 of an fBm with
Hurst exponent γ = 0.6 (εγ = 1) corrupted by discrete
white noise of unit energy.

6. CONCLUSION

We have given a theoretical result establishing that a frac-
tional spline of degree 2γ is the best estimator for a frac-
tional Brownian motion of Hurst exponent γ, given its noisy
samples. What is especially interesting here is that, although
the expression of the coefficients of the spline expansion is
time-variant due to nonstationarity of the process, these can
still be computed efficiently by filtering. The detailed ex-
pression of the estimate indicates that, away from t = 0, an
fBm actually behaves like a stationary process.
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fractal models for image processing,” IEEE Signal
Processing Magazine, vol. 19, no. 5, pp. 48–62, 2002.

[3] M. Unser and T. Blu, “Generalized smoothing splines
and the optimal discretization of the Wiener filter,”
IEEE Trans. Signal Processing, vol. 53, no. 6, pp.
2146–2159, June 2005.

[4] T. Blu and M. Unser, “Self-similarity: Part II—
optimal estimation of fractal processes,” IEEE Trans.
Signal Process., 2005, submitted.
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