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ABSTRACT 

A one-step band-limited extrapolation procedure is 

systematically developed under an a priori assumption of 

bandwidth. The rationale of the proposed scheme is to 

expand the known signal segment based on a band-limited 

basis function set and then to generate a set of empirical 

orthogonal functions (EOF’s) adaptively from the sample 

values of the band-limited function set. Simulation results 

indicate that, in addition to the attractive adaptive feature, 

this scheme also appears to guarantee a smooth result for 

inexact data, thus suggesting the robustness of the proposed 

procedure. 

1. INTRODUCTION 

The problem of extrapolating the unknown part of a band-

limited signal from its known segment under an a priori 

bandwidth assumption is a classic problem in spectrum 

analysis [1-12]. Mathematically, denoting the known 

segment of a band-limited signal )(tf  with an a priori 

known bandwidth B  by )(tg
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tPtftg
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)()()(  (1) 

then to extrapolate the unknown part of )(tf   is equivalent 

to solving for its Fourier transform )( jF from the 

following integral equation 

d
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B
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where )( jG  is the Fourier transform of the known 

segment )(tg .

Equation (2) is a Fredholm integral equation of the first 

kind with a Hermitian kernel, thus ill-posed in nature [13]. 

As a consequence, small perturbation in )(tg  may cause 

great oscillation in the solution. 

During the past thirty years, a good deal   band-limited 

extrapolation procedures have been proposed. Due to the ill-

posed nature of the problem, however, the conventional 

Papoulis-Gerchberg iteration algorithms or the versions 

using prolate spheroidal wave functions [14, 15] sometimes 

may not lead to smooth results because of the cumulative 

arithmetic error or the errors in the data. Same situation can 

also be seen in some one-step extrapolation algorithm case.  

As to those algorithms based on the Tikhonov’s 

regularization method, it appears that more efforts are 

needed to improve the algorithm efficiency, especially the 

efforts of the choice of regularization parameter. 

In what follows, a one-step extrapolation procedure 

will be presented. By approximating the known signal 

segment by a finite sum based on the band-limited function 

set

k

t

SinBt
, a set of empirical orthogonal functions 

(EOF’s) can then be adaptively generated from the sample 

values of that band-limited basis functions. After the 

coefficients of the abovementioned expansion have been 

obtained, the extrapolation of the unknown part of the signal 

is straightforward. As will be seen, the proposed scheme 

appears to be robust in the sense that it yields a smooth 

result for inexact data case. Besides, the computational 

complexity is relatively low. Therefore, the proposed 

procedure seems to be applicable to real applications. 

2. EXTRAPOLATION SCHEME 

Without loss of generality, assume that 2Ltf )( is real 

valued. Let us start with the attempt at obtaining the 

solution approximately using a representation of the known 

signal segment )(tf  ( t ) as a finite sum: 

1N

0k

kk txtf )()( t                   (3)
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where sxk ' ),,,( 1N10k   are real valued coefficients 

to be determined, )}({ tk is a certain set of band-limited 

functions. 

An initiative choice of )(tk  is the prolate spheroidal 

wave function and the corresponding coefficients can be 

obtained by 

dtttf
1

x k
k

k )()(        (4)

where sk '  are the corresponding eigenvalues and both  

sk '  and sk '  are functions of the product B . Apparently, 

the computational burden of (4) is heavy. Moreover, the 

accuracy of sxk'  would be affected greatly by the errors in 

the data when the product B is small as sk ' will be small 

in this case, especially for large k .

The sampling function set 
kBt

kBtSin )(
 is also not a 

proper choice. In fact, since )()()( BtSin1kBtSin k ,

(3) can be expressed as 

)()()( )( tQtFtf 1N2                                        (5)

where  )()( tF 1N2  is a polynomial of degree )( 1N2  and
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Equation (6) is arbitrarily close to unity on any finite 

interval when N  is sufficiently large. This implies that the 

extrapolation is now made by use a time domain polynomial. 

As a band-limited signal can’t be a time-limited signal, the 

extrapolation error would be wild for large time index 

values.  

Our choice is the function set  

k

t

SinBt
. This 

seems to be a desirable basis function set as the functions 
k

t

SinBt
),,( 10k  are of exponential type and band-

limited. In fact, inserting this function set into (3) and taking 

Fourier transform on both sides, it can be found that 

expanding the known signal segment this way is equivalent 

to approximating the Fourier transform of the band-limited 

signal )(tf by an th1N )( degree polynomial )( jF 1N .

Thus, if the optimum polynomial is obtained, the difference 

between )( jF and the approximation polynomial )( jF 1N

will be minimized. 

On the other hand, however, this function set is not 

good enough as the orthogonality does not hold for the basis 

functions. Therefore, remedy needs to be adopted to have 

the basis orthogonalized.  

Using the abovementioned function set, the discrete 

form of (3) now becomes 

itt

k1N
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where M is the number of the known data points. In practice, 

this number is usually great than N. The matrix form of (7) 

is

gxA                       (8) 

where  x, g are column vectors of dimension N , M ,

respectively, A is an M -by- N  matrix whose elements are 

simply the sample values of  the above mentioned band-

limited  function set: 
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A set of orthogonal basis functions can be generated 

using the singular value decomposition: 
T

VUA                      (10) 

Then we will have 

),,,;,,,( N21jM21ivua

N
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and a new orthogonal basis is thus adaptively generated, or 

equivalently, the empirical modes of A are obtained. In fact, 

by using the above decomposition, the columns of A are 

projected on another orthogonal basis formed by the 

columns of U.

 Note that the choice of basis functions here does not 

involve the constraint of any particular analytic form and 

the obtained orthogonal basis varies adaptively with the 

length of the known interval and the spacing of the 

sampling points. Therefore, the modes thus obtained are 

really empirical modes. In other words, the columns of U

are empirical orthogonal functions (EOF’s) while the 

columns of V provide the corresponding principal 

components of A.

After the above manipulation, sxk ' ),,,( 1N10k

can be obtained from 

gAx                                         (12) 

where 
TUVA                                     (13) 

and the elements of A are 

),,,;,,,( M21jN21i
uv

a
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where k ’s   ),,,( N21k   are the singular values of A.

Note that it is not the data g that is used to generate the 

set of orthogonal basis functions. Consequently, the 

orthogonal basis functions thus generated will have got rid 
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of the influence of the errors in the data while will adapt to 

the spacing of the sampling points sti ' ),,,( M21i .

Note also that, as the elements of A are solely 

determined by the function set 

k

t

SinBt
, which is a 

set of analytic functions, it appears that the characteristic of 

the empirical modes thus generated will be insensible to the 

length of the known signal segment and the spacing of the 

data points, as long as the requirement of sampling theorem 

is fulfilled while M  is large enough.    

On the other hand, however, the smoothness of the 

solution may still be affected by the errors in the data due 

to the ill-conditioned nature of the problem. Therefore, the 

mode number needs to be reduced so as to discard the 

insignificant modes. This is equivalent to replacing A  in 

(12) by the effective pseudoinverse and therefore can be 

done by taking the following cut-off rule: 

k

k
kk

0

1

          (15) 

where is some tolerance measure that reflects the errors 

in the data. 

After some mathematical manipulation on
22

/ xx ,

where x  denotes the error part in the solution x , we 

found that the following measure is a proper one: 

            

2

2

g

g
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where 1  is the largest singular value of A, g denotes the 

error part in the data. Due to the restriction of paper length, 

the details of manipulation will not be given here. 

By using the above cut-off rule to reduce the mode 

number,  (14) becomes 

),,,;,,,( M21jN21i
uv

a

k
k
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When all xk’s ),,,( 1N10k  have been obtained, the 

signal outside the interval , can be extrapolated using 

(3) and the corresponding extrapolation error can be 

measured by 

                            
2

2

1N

F

FF
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3. SIMULATION RESULTS 

To verify the effectiveness of the proposed scheme, 

computer simulation has been conducted for the following 

two signal pairs: 

   )(
sin

BP
t

Bt
                        (19) 

B

2
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1
t
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where the signal pair (19) is purposely selected as the same 

in [1] for comparison. As to the second signal pair, it is 

much tougher since its Fourier transform does not have 

derivatives over the total bandwidth range BB, . In fact, 

our simulation indicates that the algorithms proposed by 

[1,3] can’t achieve satisfactory results for this case, 

especially when the data are inexact. 

As mentioned before, the EOF’s are purely derived 

from the analytic function set 

k

t

SinBt
 and therefore 

the spacing of the sampling points will have little influence 

on the characteristic of EOF’s. To verify this property, both 

uniform and non-uniform sampling points are adopted under 

the condition that the requirement of sampling theorem is 

fulfilled while M maintains large enough. 

The elements of the matrix A, aij in (9), can be 

evaluated either from the truncated Taylor expansion or 

from the recursive formula of 

k

t

SinBt
.

For the first signal pair (19), simulation is conducted 

for exact data and 
B3B60

~ , N=5~9. In all cases, 

perfect result is achieved, i.e., the approximation 

polynomial 1jF 1N )( . This result is better than [1]. 

Although it seems simply because the Fourier transform in 

this case can be exactly expressed by a polynomial, however, 

it still verifies the effectiveness of the proposed scheme. 

Similar simulation is conducted for the second signal 

pair (20). Table 1 shows the results for a 6-th degree 

polynomial approximation for exact data and Fig.1 gives the 

overlaid plots of )( jF6 shown in Table 1. As can be seen, 

the resulting five curves are overlapped each other, thus 

verifying that, nearly identical results for a fixed N can be 

obtained for different length of the known segment when 

the data are exact. 

In order to examine the effect caused by inexact data, 

simulation is conducted for signal pair (20) using a 4-th 

degree polynomial under the following conditions:
B5

,

B10
; 322

10gg , 410 , 510 .  Both uniform and 

non-uniform sampling points are used.  

Shown in Fig.2 are the overlaid plots of the resulting 

)( jF4 . As can be seen from Fig.2, smooth results are 

obtained for all cases and the differences between each are 
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relatively small. Besides, the associated extrapolation errors 

measured by (18) are about in the order of 310 for all cases, 

thus verifying the effectiveness and suggesting the 

robustness of the proposed procedure.

4. CONCLUSION 

A one-step band-limited extrapolation procedure employing 

the EOF’s is presented. Under an a priori assumption of 

bandwidth, by expressing the known signal segment as a 

finite sum of the band-limited function set 

k

t

SinBt
, a 

set of empirical orthogonal functions (EOF’s) is then 

generated from the sample values of the above function set 

adaptively with the known segment length and the spacing 

of the sampling points. Computer simulation results verify 

the adaptive property and the effectiveness of the proposed 

procedure. It has also been found that, the proposed scheme 

appears to be robust in the sense that a smooth result is 

usually guaranteed for inexact data case while the 

extrapolation error is relatively small. Moreover, due to its 

one-step extrapolation nature, the involved algorithm is also 

relatively simple. Therefore, the proposed scheme seems to 

be applicable to real applications. 

.
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TABLE I. SIGNAL PAIR (20), 6TH
 DEGREE,  X1=X3=X5=0

x0 x2 x4 x6

1 0.91457 -2.30747 2.82084 -1.46705 

2 0.91455 -2.30715 2.81990 -1.46637 

3 0.91456 -2.30739 2.82061 -1.46689 

4 0.91460 -2.30818 2.82298 -1.46862 

5 0.91467 -2.30963 2.82735 -1.47183 

   Note
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Figure.2 Overlaid Plots of )( jF4 of Signal (20) for Inexact Data 
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Figure.1 Overlaid Plots of )( jF6  of  Signal (20) for Exact Data 
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