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ABSTRACT

Many sources of information are of analogue or continuous-time na-
ture. However, digital signal processing applications rely on discrete
data. We consider the problem of approximating L2 inner products,
i.e., representation coefficients of a continuous-time signal, while
having the possibly non-ideal signal samples, as the only available
data. By adopting a generalized sampling scheme, a minimax solu-
tion is suggested. We then compare our approach with the piecewise-
constant approximation method, commonly used for this problem.

1. INTRODUCTION

Signal processing applications are concerned mainly with digital data,
although the origin of many sources of information is analogue. This
is the situation in speech and audio, optics, radar, sonar, and biomed-
ical signals.

In many cases, analysis of a continuous-time signal x(t) is ob-
tained by evaluating L2 inner-products 〈wn(t),x(t)〉 for a set of
functions {wn(t)}. As an example, suppose that a time-frequency
analysis of a continuous-time signal is to be performed. To accom-
plish this, one may calculate a Gabor or wavelet representation. Both
are based on finding the signal’s representation coefficients by per-
forming L2 inner products with a known set of functions. In fact,
due to the Riesz representation theorem [1], any linear and bounded
functional applied to x(t) can be represented as inner product be-
tween some function w(t) and x(t).

In many applications of digital signal processing, however, there
is no knowledge of the continuous-time signal itself, but only of its
sample sequence. The problem is to approximate the required repre-
sentation coefficients by proper processing of the available samples.

The case of processing uniform and ideal samples (i.e., the n’th
sample is c[n] = x(nT ), where T is the sampling interval) was
considered in [2]. In practice however, ideal sampling is impossi-
ble to implement. Here, we extend the work [2] by adopting the
generalized sampling scheme [3, 4, 5, 6]. Generalized samples of a
continuous-time signal are represented as the inner products of this
signal with a set of sampling functions {sn(t)} associated with the
acquisition device. Thus, the n’th sample can be written as

c[n] = 〈sn(t),x(t)〉. (1)

This sampling model is general enough to describe any linear and
bounded acquisition device. As an example, consider an analog to
digital converter that performs pre-filtering prior to sampling. In
such a setting, the sampling vectors {sn(t)} are shifted and mirrored
versions of the impulse response of the pre-filter [3].
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In many occasions, the fact that the samples are non-ideal is
simply ignored. Assuming that the sample value is close to the mean
value of the signal, within some interval of length T , a common
approach is to approximate the L2 inner product by a sum

〈w(t), x(t)〉 ≈ T
∑

n

c[n]w∗(nT ), (2)

where * denotes complex conjugate. To determine the quality of this
approximation, one must assume some regularity conditions on the
functions involved. For analysis of this standard approach, see [7].

Yet another way to evaluate L2 inner products, is to return first
to the continuous-time domain [8, 9]. For that, the sample sequence
is used as coefficients of some synthesis functions. In fact, this im-
plies that the original signal is approximated within some subspace
of L2, created by the synthesis function set. For analysis of the latter
methodology, see [9].

In this paper we consider a different approach. Given the gen-
eralized samples, we approximate the desired representation coef-
ficients in a minimax sense. We then analyze the performance of
the suggested method, comparing it with the sum approximation ap-
proach (2). Our results extend the work in [2] which treated the ideal
sampling case, to practical non-ideal sampling schemes.

The outline of this paper is as follows. In Section 2 we describe
the mathematical setting and formulate our problem. Section 3 de-
velops the processing method of the available samples, by approxi-
mating the representation coefficients in a minimax sense. Section
4 evaluates the relations between the errors due to the minimax ap-
proach and the standard sum approximation method. Finally, in Sec-
tion 5, we conclude with several simulations.

2. THE PROBLEM

2.1. Mathematical Preliminaries

We denote signals in L2 by bold lowercase letters, omitting the time
dependence, when possible. The elements of a sequence c ∈ l2 will
be written with square brackets, e.g. c[n]. The operator PA rep-
resents the orthogonal projection onto a closed subspace A of L2,
and A⊥ is the orthogonal complement of A. The Moore-Penrose
pseudo inverse and the adjoint of a bounded transformation T are
written as T † and T ∗, respectively. The inner product between sig-
nals x,y ∈ L2 is 〈x,y〉 =

∫ ∞
−∞ x∗(t)y(t)dt, and ‖x‖2 = 〈x,x〉 is

the squared norm of x. We denote by 〈·, ·〉l2 and ‖·‖l2
the l2 inner

product and norm, respectively. ST is the ideal sampling operator,
such that the n’th element of ST w is w(nT ). A set transforma-
tion V : l2 → L2 corresponding to frame vectors {vn(t)} ∈ L2 is
defined by V a =

∑
n a[n]vn(t) for all a ∈ l2. According to the

definition of adjoint, if a = V ∗y, then a[n] = 〈vn, y〉. Denoting
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by S (W ) the set transformation corresponding to the vectors {sn}
({wn}), the generalized samples c[n] = 〈sn, x〉 can be written as
c = S∗x, and the desired representation coefficients q[n] = 〈wn, x〉
by q = W ∗x.

To handle well posed problems, we assume that the generalized
sample sequence c, and the required representation coefficients q =
W ∗x have finite energy, i.e., q, c ∈ l2. To ensure this, we assume
that the set {sn} ({wn}) forms a frame for S = span {sn} (W =

span {wn}).

2.2. Perfect Evaluation of Representation Coefficients

Our main goal is to approximate a set of representation coefficients
q = W ∗x, by proper processing of the generalized samples c =
S∗x. A natural question to consider is whether there is an unavoid-
able error due to our partial knowledge of x(t), or can we evaluate
exactly the required L2 inner products based on the samples c. Let d
be the sequence obtained by some (possibly nonlinear) transforma-
tion applied to the sample sequence. It is quite intuitive, and not hard
to show that for a general x ∈ L2, the error can be made zero, i.e.,
q = d, if and only if W ⊆ S . (See [10, Sec. 3] for proof of a similar
result). However, by restricting our attention to a proper subgroup
of signals in L2, it is possible to obtain a zero error, even if W � S .
This is true whenever there is a prior knowledge of x, which en-
ables us to determine a bijection between x(t) and its samples. To
illustrate the last point, suppose that x ∈ A, where A is a closed
subspace of L2 satisfying the direct sum condition1 L2 = A⊕ S⊥.
Then, we can perfectly reconstruct x from its generalized samples,
by [10]

x = A(S∗A)†c, (3)

where A is any bounded set transformation with the range A. As a
result, we can perfectly evaluate the coefficients q = W ∗x as

q = W ∗A(S∗A)†c. (4)

2.3. Problem Definition

In the general case, the condition W ⊆ S may not be satisfied, or
there is no prior knowledge of x(t). Thus, the coefficients W ∗x
cannot be computed exactly and instead must be approximated from
the given samples c. A straightforward approach is to choose a se-
quence d that minimizes the squared norm of the error vector W ∗x−
d. Since we know that x satisfies c = S∗x, by decomposing x
along S and S⊥, the error vector can be written as W ∗S(S∗S)†c +
W ∗PS⊥x − d. This leads to the following objective

min
d

∥∥∥W ∗S(S∗S)†c + W ∗PS⊥x − d
∥∥∥2

l2
. (5)

However, it is not difficult to show that the solution of (5) will depend
on PS⊥x, which is unknown. To cancel the dependence on x, one
may instead consider a robust approach, where the sequence d is
optimized for the worst possible input x. If the norm of the input
is not bounded, so is the norm of the error. Hence, to define a well
posed problem we will additionally assume that x is norm bounded
by some positive constant L. This leads to the minimax objective

min
d

max
‖x‖≤L,c=S∗x

‖W ∗x − d‖2
l2

. (6)

In the next sections we derive a solution for d, and compare its
performance with the standard approach, given in (2).

1The direct sum between two closed subspaces A and S⊥ is the sum set{
a + v; a ∈ A, v ∈ S⊥}

with the property A ∩ S⊥ = {0}.

3. MINIMAX APPROXIMATION

The minimax problem of (6) is closely related to the generalized
sampling problem considered in [10, Thr. 3].

Theorem 1. Consider the problem

min
d

max
c=S∗x,‖x‖≤L

‖W ∗x − d‖2
l2

,

where W and S are bounded set transformations with R(W ) = W
and R(S) = S . A possible solution is

d = W ∗S(S∗S)†c. (7)

Proof. First we note that any x satisfying S∗x = c and ‖x‖ ≤ L is
of the form x = S (S∗S)† c + v for some v ∈ G where

G �
{
v | v ∈ S⊥, ‖v‖ ≤ L′

}
,

and

L′ =

√
L2 − ‖S(S∗S)†c‖2. (8)

Thus,

mind maxc=S∗x,‖x‖≤L ‖W ∗x− d‖2
l2

=

mind maxv∈G
∥∥W ∗S(S∗S)†c − d + W ∗v

∥∥2

l2
. (9)

The proof then follows from the proof of [10, Thr. 3], by redefining
the vector ad as it appears in [10, Thr. 3], to be ad = W ∗S(S∗S)†c−
d, and using W ∗v instead of PWv.

Note that (7) resembles the solution of the Wiener-Hopf equa-
tions, where the Gramian matrix of the autocorrelations is first in-
verted (pseudo-inverted), and the cross-correlation Gramian matrix
is then applied. Also note, that we can rewrite (7) as d = W ∗PSx.
Thus, the proposed approximation method results in a zero error if
the prior knowledge of x ∈ S is correct. In fact, by identifying A of
(4) with S, the solutions indeed coincide.

The minimax objective (6) extends a recent work by Kirshner
and Porat [2]. There, it was assumed that a single representation co-
efficient 〈w(t),x(t)〉 is to be approximated by processing an ideal
sample sequence ST x. Reinterpreting [2], the approximation prob-
lem of [2, Thr. 3], can be restated using the following objective:

min
b

max
‖x‖≤L

|〈w,x〉 − 〈b, ST x〉l2 | . (10)

Note that the prior c = ST x is not expressed in (10) and that the
processing method is restricted to a linear form through 〈b, ST x〉l2 .
Yet, by degenerating our results to this ideal sampling case setting,
it can be shown that (7) coincides2 with the solution of (10), as it is
expressed in [2, Thr. 3].

4. ERROR ANALYSIS

In this section we investigate the error due to the suggested minimax
approach, comparing it with the sum approximation (2).

Let emx = W ∗x−d be the error sequences due to the minimax
approach, where d is given by (7). Rewriting x = S(S∗S)†c +
PS⊥x and using (7), we have

emx = W ∗PS⊥x. (11)

2In fact, this is rather a delicate point as Sobolev space must be considered
instead of the L2 Hilbert space; however, the full discussion is beyond the
scope of this paper.
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Define esum to be the error sequence due to the sum method (2).
The n’th element of esum satisfies

esum[n] = 〈wn,x〉 − T 〈ST wn, c〉l2 .

Accordingly, we can also write

esum = a + emx, (12)

where
a[n] = 〈wn, S(S∗S)†c〉 − T 〈ST wn, c〉l2 (13)

expresses the difference between the two approximation methods.
Note that since the sample sequence c is available, and so are T, S
and W , the l2 sequence a is known as well.

In the lemma below we obtain tight bounds for ‖esum‖2
l2

−
‖emx‖2

l2
. Obviously, if this value is positive, then the minimax

method is preferable to the sum approximation method, and vice
versa.

Lemma 1. The squared norm difference ‖esum‖2
l2

− ‖emx‖2
l2

lies

within the tight bounds BL ≤ ‖esum‖2
l2
− ‖emx‖2

l2
≤ BH , where

BL = ‖a‖2
l2
− 2 |〈a, emx〉l2 | (14)

BH = ‖a‖2
l2

+ 2 |〈a, emx〉l2 | .

Proof. Taking the squared norm of both sides of (12) and rearrang-
ing terms, we have

‖esum‖2
l2
− ‖emx‖2

l2
= ‖a‖2

l2
+ 2
{〈a, emx〉l2} ,

where 
{·} denotes the real part. Additionally, we can bound

− |〈a, emx〉l2 | ≤ 
{〈a, emx〉l2} ≤ |〈a, emx〉l2 | .
We now show that those bounds are tight. Assume to the contrary
that emx = W ∗PS⊥x maximizes 
{〈a, emx〉l2}, but


{〈a, emx〉l2} < |〈a, emx〉l2 | .

Define x2 = S(S∗S)†c +
〈W∗PS⊥x,a〉l2

|〈W∗PS⊥x,a〉l2 |PS⊥x. Note that x2 is

a valid input since it satisfies the norm constraint ‖x2‖ ≤ L and is
consistent with the known samples (i.e., c = S∗x2). However, by
examining the minimax error at x2, we have


{〈a,W ∗PS⊥x2〉l2} = |〈a, W ∗PS⊥x2〉l2 | ,
contradicting our initial assumption. The proof of tightness for the
lower bound is similar.

Since the tight upper bound BH is nonnegative for all choices
of emx, we conclude that the sum approximation method cannot
outperform the suggested minimax approach, for all possible in-
puts. Even when T → 0, the minimax scheme can outperform
the sum approximation approach by an amount not smaller than
‖a‖2

l2
= ‖W ∗PSx‖2

l2
, as evident from (13) and (14).

On the other hand, in some cases, it is possible to have better
performance by the minimax approach, for all possible inputs. To
assure this, the lower bound BL must be positive. In the follow-
ing lemma, we introduce (without proof) a tight upper bound for
‖emx‖l2

assuming that the set {wn(t)} is orthonormal. Using this
tight upper bound, we then present a sufficient condition for the min-
imax method to outperform the standard approach.

Lemma 2. Let {wn(t)} be an orthonormal set, and let x satisfy
‖x‖ ≤ L, c = S∗x. Then

‖emx‖l2
≤ Bmx =

√
1 − cos2 (W,S)L′,

where cos (W,S) = infy∈W,‖y‖=1 ‖PSy‖ is related to the small-
est angle [3, 10] between the spaces3 W,S and L′ is given by (8).

Using Lemma 1, Cauchy-Schwartz inequality, and Lemma 2 we
state the following corollary.

Corollary 1. Let {wn(t)} be an orthonormal set. A sufficient con-
dition for the minimax method to outperform the standard approach,
for all possible inputs, is ‖a‖l2

≥ 2Bmx.

Another interesting case, which is easy to evaluate, is when a
single representation coefficient 〈w,x〉L2 is to be approximated. In
such circumstances, emx, esum and a are all scalars. It can be shown
that in such a setting, the minimax method and the sum approxima-
tion approach are tightly upper bounded by

|emx| ≤ Bmx = L′ ‖PS⊥w‖ , (15)

|esum| ≤ Bsum = |a| + Bmx. (16)

A sufficient condition for the minimax method to outperform the
sum approach becomes

|a| ≥ 2L′ ‖PS⊥w‖ . (17)

As a conclusion from the above analysis, we get that when the
spaces W and S are close, or when most of the signal’s energy lies
with the sampling space S (such that L′ is small), then the mini-
max method will outperform the standard approach. Similarly, for
large sampling intervals T , we can make ‖a‖l2

large enough, again
guaranteeing better performance by the minimax method.

5. EXAMPLES

Suppose that we wish to approximate a single representation coeffi-
cient 〈w, x〉, where w(t) is a normalized Gaussian. The generalized
samples of x(t) were obtained by the average value of x(t) within a
small interval of length ∆, i.e.,

c[n] =
1

∆

∫ nT

nT−∆

x(t)dt. (18)

In this setting, the n’th sampling vector sn(t) of (1) is

sn(t) =

{
1/∆, t ∈ [nT − ∆, nT ];
0, otherwise.

(19)

The test signal x(t) is set to be a modulated and normalized Gaus-

sian. Specifically, defining y(t) = π− 1
4 e−t2/2 cos(4πt), we get

x(t) = y(t)/ ‖y(t)‖.
In the first experiment, we evaluated Bsum − Bmx using the

sample sequence c. As discussed in Section 4, this value describes
the improvement of the minimax method over the standard approach,
for the worst possible input x. Note that the assumed test signal is
by no means the worst possible input. It was merely used to produce
the generalized samples. In Figure 1 we present the value of this
bound difference for several choices of ∆. Note that the error is
not monotone with respect to the sampling interval T . Additionally,
when increasing the integration interval ∆ the sum approximation
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Fig. 1. Evaluation of |a| = Bsum − Bmx, which describes the
possible improvement by the minimax method over the standard ap-
proach, for several choices of ∆.
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Fig. 2. Minimax vs. sum approximation. Shown are the up-
per bounds Bmx, Bsum, and the specific approximation errors
emx, esum for ∆ = 0.15.

becomes closer to the true integral, which reduces the possible gain
of the minimax method.

In the second experiment, shown in Figure 2, a comparison is
made between the minimax method and the standard approach for
the specific signals at hand. There, the integration interval ∆ is set to
0.15. Surprisingly, the proposed technique outperforms the standard
approach in terms of the concrete approximation error at hand. The
latter happens despite the fact that condition (17) is not satisfied for
this example. However, we remind the reader that (17) is a sufficient
rather than a necessary condition.

6. CONCLUSIONS

A minimax approach has been introduced to approximating inner-
product calculations within the continuous-time domain, when hav-
ing only generalized samples of the signal as the available data.

3An explicit expression for cos (W,S) in the case of shift invariant
spaces, is given in [3].

Comparison of the method with the standard Rieman sum approx-
imation has been introduced. The derivations presented herein ex-
tend recent results concerning the ideal sampling case, allowing for
practical sampling schemes to be considered.
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Birkhäuser, 1981.

[2] H. Kirshner and M. Porat, “On sampling invariant signal rep-
resentation,” CCIT report 520, Technion, Feb. 2005, submitted
to IEEE Trans. Signal Processing.

[3] M. Unser and A. Aldroubi, “A general sampling theory for
nonideal acquisition devices,” IEEE Trans. Signal Processing,
vol. 42, no. 11, pp. 2915–2925, Nov. 1994.

[4] Y. C. Eldar, “Sampling and reconstruction in arbitrary spaces
and oblique dual frame vectors,” J. Fourier Analys. Appl., vol.
1, no. 9, pp. 77–96, Jan. 2003.

[5] P. P. Vaidyanathan, “Generalizations of the sampling theorem:
Seven decades after Nyquist,” IEEE Trans. Circuit Syst. I, vol.
48, no. 9, pp. 1094–1109, Sep. 2001.

[6] M. Unser and J. Zerubia, “Generalized sampling: Stability and
performance analysis,” IEEE Trans. Signal Processing, vol.
45, no. 12, pp. 2941–2950, Dec. 1997.

[7] M. Fornasier, “Function spaces inclusion and rate of conver-
gence of Riemann-type sums in numerical integration,” Nu-
merical Functional Analysis and Opt., vol. 24, no. 1,2, pp. 45–
57, 2003.

[8] N. Kaiblinger, “Approximation of the Fourier transform and
the dual Gabor window,” J. Fourier Anal. Appl., vol. 11, no. 1,
pp. 25–42, 2005.

[9] T. Blu and M. Unser, “Approximation error for quasi-
interpolators and (multi-)wavelet expansions,” Applied and
Computational Harmonic Analysis, vol. 6, pp. 219251, 1999.

[10] Y. C. Eldar and T. Dvorkind, “A minimum squared-
error framework for sampling and reconstruction in arbitrary
spaces,” to appear in IEEE Trans. Signal Processing.

III  835


