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Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

pjcro@isr.ist.utl.pt

ABSTRACT

A non-iterative methodology for the interpolation of sampled
signals with missing data resorting to Principal Component
Analysis is introduced. Based on unbiased estimators for
the mean and covariance of signals, corrupted by zero-mean
noise, the Principal Component Analysis is performed and the
signal is interpolated given the optimal solution of a weighted
least squares minimization problem. Upper and lower bounds
for the mean square interpolation error are also provided in
the interval of validity of the method. A preliminary per-
formance assessment, with 1-D and 2-D signals, is included
based on the results of a series of Monte Carlo experiments.

1. INTRODUCTION

The problem of interpolation of sampled signals with miss-
ing data is central in a series of engineering problems. Au-
tonomous robotic surveying [7], underwater positioning, re-
mote sensing, digital communications (subject to bursts of
destructive interferences), and computer vision (when occlu-
sions occurs) are a few of a multitude of examples where data
is not available at uniform temporal/spatial rates.

The scientific community has been active for long time in
solving interpolation problems, see [1, 3, 8, 13] and the ref-
erences therein for an in-depth repository of available tech-
niques. Iterative methods such as Projection Onto Convex
Sets (POCS) and the Expectation/Maximization (EM) algo-
rithm [10] are the most commonly used. The iterative char-
acteristics, the domain of application (low-frequency or ban-
dlimited signals) and the low convergence rates of these meth-
ods preclude their use on a number of real time applications.

Motivated by a terrain based navigation problem for un-
derwater autonomous robotic activities [7, 9], this paper pro-
poses a new methodology that departs from the aforemen-
tioned approaches. It introduces a non-iterative methodol-
ogy for the interpolation of sampled signals with missing data
based on Principal Component Analysis (PCA). Unbiased es-
timators for the mean and covariance of signals corrupted by
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zero-mean noise allow the PCA computation. The signal in-
terpolation is tackled resorting to the optimal solution of a
weighted least squares minimization problem. Moreover, up-
per and lower bounds for the mean square interpolation error
and the interval of validity of the proposed method are pro-
vided.

PCA has already been used in interpolation problems with
sampled signals with incomplete data. In [11], PCA is applied
to sparse data from segmented images (not directly on the
complete signal, as in the present work). Also in [2], PCA is
computed from signals in a database (without missing data),
and is then used to perform a convex mixture of the base sig-
nals.

The structure of the paper is the following: section 2 in-
troduces unbiased estimators for the mean and covariance of
discrete time signals with missing data and the PCA computa-
tion. Section 3 describes an optimal solution for the interpo-
lation of signals, corrupted by zero-mean noise. The interval
of validity of the proposed methodology and lower and upper
bounds for the interpolation error variance are deduced, ex-
ploiting the PCA properties. Results from a series of Monte
Carlo experiments with 1-D and 2-D signals are summarized
in section 4, to allow a preliminary performance assessment
of the proposed method. Finally, some conclusions are drawn
and future work is unveiled in section 5.

2. PCA FOR SIGNALS WITH MISSING DATA

PCA was developed independently by Karhunen in statistical
theory and generalized by Loève, based on a method previ-
ously introduced by Pearson and applied to psychometry by
Hotelling, as detailed in [4] and in the references therein.

Considering all linear transformations PCA, based on the
Karhunen-Loève (KL) transform, allows for the optimal ap-
proximation to a stochastic signal in the least squares sense.
It is a widely used signal expansion technique, featuring un-
correlated coefficients, with superior performance in dimen-
sionality reduction. These features make PCA an interesting
methodology for many signal processing applications such as
data compression, image and voice processing, data mining,
exploratory data analysis, pattern recognition, and time series
prediction [4].
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2.1. Mean and Covariance Estimators

Consider a signal x ∈ l2, i.e. with finite energy, from a
real-valued stochastic process corrupted by zero mean noise,
and an indicator index i, represented as column vectors of
length N . The underlying process can result from a non-
homogeneous spatial survey, due to physical or kinematic con-
strains, or associated with the reception of a signal in a com-
munications channel corrupted by bursts of noise that destroy
completely the information contained in some samples. The
index i(j), j = 1, . . . , N is set to 1 if the jth component of
signal x is available and zero otherwise. In the latter, the com-
ponent x(j) is set to zero, without loss of generality. Auxil-
iary results on unbiased and efficient estimators for the mean
and covariance of signals with missing data, will now be in-
troduced.

Lemma 2.1 Given a set of M signals xi, with associated in-
dexes ii, the auxiliary vector of counters c =

∑M
i=1 ii, and

C =
∑M

i=1 iiiTi :
i) the estimator for the jth component of the ensemble mean

mx(j) =
1

c(j)

M∑
i=1

ii(j)xi(j), j = 1, . . . , N ;

ii) the estimator for the covariance element Rxx(j, k), j, k =
1, . . . , N,, given yi = xi − mx,

Rxx(j, k) =
1

C(j, k) − 1

M∑
i=1

ii(j)ii(k)yi(j)y(k)T ,

are unbiased and efficient. Moreover, mx ∈ l2 and ‖Rxx‖ is

finite.

The proof resorts to basic statistical signal processing theory
that can be found for instance in [5].

2.2. Principal Component Analysis

PCA can now be computed, resorting to the KL transform,
following the classical approach. The objective is to find an
orthogonal basis to decompose a stochastic signal r ∈ l2,
from the same original space, to be computed as r = Uv +
mx, where the vector v ∈ l2 is the projection of r in the ba-
sis v = UT (r − mx). The matrix U = [u1 u2 . . . uN ] is
composed by the N orthogonal column vectors of the basis,
verifying the eigenvalue problem

Rxxuj = λjuj , j = 1, ..., N, uj ∈ l2. (1)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥
· · · ≥ λN , the choice of the first n << N principal com-
ponents, leads to an approximation to the stochastic signals
given by the ratio on the covariances associated with the en-
ergy of the components, i.e.

∑
n λn/

∑
N λN .

Departing from the perfect interpolation setup [12], the
matrix Ũ = [u1 u2 . . . un] with dimensions RN×n will be
used as the approximate PCA associated transformation. In
many applications where stochastic multidimensional signals
are the key to tackle the problem at hand, this approximation
can lead to large dimensional reduction and thus to a compu-
tational complexity optimization.

The advantages of PCA are threefold: i) it is an optimal
(in terms of mean squared error) linear scheme for compress-
ing a set of high dimensional vectors into a set of lower di-
mensional vectors; ii) the model parameters can be computed
directly from the ensemble covariance, even under missing
data; iii) given the model parameters, projection into and from
the bases are computationally inexpensive operationsO(nN).

3. INTERPOLATION USING PCA

The purpose of this section is to describe a methodology al-
lowing the interpolation of sampled signals with missing data,
corrupted by zero mean noise, based on the following as-
sumption, central to the rest of this work:

Assumption 3.1 The missing data on the sampled signals are
negligible and the available samples, in a number greater
than the selected number of principal components, are rep-
resentative of the original signal.

Noise with null mean is assumed to be corrupting the under-
lying signal, departing from the gaussian noise assumptions
in [2, 10]. To solve the interpolation problem at hand, con-
sider that each signal xi is obtained from the original signal ri

due to missing data, verifying the relation xi = Liri, where
Li ∈ RN×N is a diagonal matrix, filled with the indicator
index ii. The interpolation operation can be formulated as
finding r̃i such that minimizes the weighted l2 norm of the
error, i.e.

min
r̃i∈RN

‖Li(r̃i − ri)‖2
2,W = (Li(r̃i − ri))T W(Li(r̃i − ri)).

Using the approximated PCA projection ri = Ũ(vi + mx),
the minimization can now be written as

min
ṽi∈Rn

‖Li(Ũṽi + mx) − xi‖2
2,W = ‖LiŨṽi − yi‖2

2,W ,

that has the solution

ṽi = (ŨT LiWLiŨ)−1ŨT LiWT (xi − Limx), (2)

where the relations LLT = L and LT = L were used. Re-
sorting to optimal stochastic minimization techniques [6] the
knowledge of the stochastic process allows the optimal choice
of W = R−1

xx . According to the previous assumption, the
principal components can be computed with negligible degra-
dation, and the signal can finally be reconstructed using the
relation r̃i = Ũṽi +mx. The relations among the underlying
signals are depicted in diagram 1.
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Fig. 1. Diagram describing the interpolation of sampling sig-
nals with missing data.

It is important to remark that the matrix ŨT LiWLiŨ to
be inverted has dimension n × n, presenting reduced compu-
tational complexity, given the choice of n << N . Moreover,
this result can be interpreted as a generalization of the classi-
cal Yen interpolator [13] and of the minimax-optimal interpo-
lators [3].

The minimization is well posed in the case where the ex-
pected number of samples available are greater than the se-
lected number of principal components, also according with
assumption 3.1, N(1 − η) > n, where η is the percentage
of missing samples in the signal. This leads to the validity
interval for the proposed method

0 ≤ η <
N − n

N
. (3)

In the sequel, assume that n components are used from the
total of N available. Lower and upper bounds on the variance
of the interpolation error per sample σ2 can be found given
the PCA stochastic approximation properties, i.e,

N∑
i=n+1

λi ≤ E[‖r̃ − r‖2
2] ≤

N∑
i=1

λi,

leading in the missing data case to

∑N
i=n+1 λi

(N − 1)(1 − η)
≤ σ2 ≤

∑N
i=1 λi

(N − 1)(1 − η)
. (4)

4. RESULTS FOR PERFORMANCE ASSESSMENT

In this section the results from a series of Monte Carlo ex-
periments (20 for each parameter combination), using the es-
timators proposed in section 2 and the interpolation method
introduced in section 3, applied to 1D and 2D signals, are pre-
sented. The bounds deduced for the interpolation under miss-
ing data are checked in the interval of validity of the method.

In Fig. 2, a non-bandlimited signal of length 128 samples
considered with 18 samples missing, i.e. η ∼ 0.2. After
the selection of M = 128 − N = 117 mosaics, the ensem-
ble mean and covariance are computed according with lemma
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Fig. 2. 1D Signal interpolation under missing data (green)
with N = 7, n = 3, and η = 0.2. In pink the results of local
averaging (window of length N ).
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Fig. 3. Mean and covariance estimates (partial) from lemma
2.1.

2.1. The evolution of the mean and covariance estimates are
depicted in Fig. 3. Given the PCA as computed in section 2,
the missing data is interpolated based on the solution to the
proposed l2 minimization problem.

A performance study for a variation of the percentage of
lost samples in the interval η = [0.01, 0.73] is presented in
Fig. 4, both for the proposed method and for a local averaging
method, for N = 11. The bounds and the validity interval are
observed and a graceful degradation is obtained. Clearly, the
upper bound is very conservative.
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Fig. 4. Error variance with the proposed method for the inter-
polated samples (red), for all samples using PCA (green), and
local averaging (pink). Upper and lower bounds (from 4) and
validity barrier (from 3) in black, for N = 11 and n = 3.
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Fig. 5. 2D Signal interpolation under missing data, with N =
7 ∗ 7 = 49, n = 7, and η = 0.2.

In Fig. 5, an 8 bit black and white image is considered.
In the upper left and right panels of the figure, the original
and an example of that image with missing data are depicted,
respectively. In the lower left of the figure, the interpolated
image obtained is presented. In the lower right, the evolution
of the signal to noise ratio in the presence of missing data,
over the interval η = [0.05, 0.8], computed as

SNR(a, b) = 10log10

( ‖a‖2

‖a − b‖2

)
,

for the original image I and for the interpolated image Ĩ,
i.e. SNR(I, Ĩ), is presented, with a graceful degradation for
η ≤ 0.7. For larger values of η, Assumption 3.1 does not
hold anymore, due to severe loss of information on the signal
at hand. However, it is important to remark that an improve-
ment in the excess of 15 dB is achieved in most cases on the
interval of validity of the method.

5. CONCLUSIONS AND FUTURE WORK

A new methodology to interpolate sampled signals with miss-
ing data is presented, supported on estimates from two effi-
cient estimators for the mean and covariance of the underly-
ing signals. Upper and lower bounds for the problem are pre-
sented and validated through a series of tests, with improved
performance when compared with a local averaging method.

In the near future an in-depth benchmark with other meth-
ods, resorting to a collection of representative signals, will be
performed and sensitivity studies on a series of parameters in
the estimators, PCA, and in the interpolation method will be

carried out. The extension of the proposed method to mul-
tidimensional signals is obvious but it should be elucidated
the percentage of missing data acceptable to obtain interpo-
lated signals relevant to the underlying problems. Ultimately,
the application of the proposed methodology to data obtained
in a series of surveying missions at sea, with unmanned un-
derwater vehicles, is expected to be the key enabling tool to
tackle terrain based navigation problems with feature based
techniques [9].
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