
A DIRECT METHOD TO GENERATE APPROXIMATIONS OF THE BARANKIN BOUND

Angela Quinlan (1), Eric Chaumette (2), Pascal Larzabal(3)

(1) Trinity College Dublin, Dublin, Ireland - (2) Thales Naval France, Bagneux, France
(3) Ecole Normale Supérieure de Cachan, Cachan, France

ABSTRACT

The search for an easily computable but tight approximation of
the Barankin Bound (BB) is important for the prediction of the
Signal-to-Noise Ratio (SNR) value where the Cramer-Rao bound
(CRB) becomes unreliable for prediction of Maximum Likelihood
Estimators (MLE) variance. In this paper we propose a method
for the derivation of a general class of BB approximations which
has the advantage of a clear interpretation. This method suggests a
new practical BB approximation, whose computational complex-
ity does not exceed that of the CRB but which seems tighter than
existing approximations.

1. INTRODUCTION

Minimal performance bounds allow for calculation of the best per-
formance that can be achieved in the Mean Square Error (MSE)
sense, when estimating a parameter of a signal corrupted by noise.
In the present paper, the parameters being estimated are consid-
ered to be deterministic [1] and to be embedded in a noise signal
whose parameters are also considered deterministic. Historically
the first MSE lower bound for deterministic parameters to be de-
rived was the CRB[2], which has been the most widely used since.
Its popularity is largely due to its simplicity of calculation, the fact
that in many cases it can be achieved asymptotically (high SNR
[3] and/or large number of snapshots [2]) by MLE [1], and last
but not least, its noticeable property of being the lowest bound on
the MSE of unbiased estimators, since it derives from the weakest
formulation of unbiasedness at the vicinity of any selected value
of the parameters [4][5][6]. This initial characterization of locally
unbiased estimators has been improved first by Bhattacharyya’s
works [1][4] which refined the characterization of local unbiased-
ness, and significantly generalized by Barankin works [4], who
established the general form of the greatest lower bound of any
absolute moment of an unbiased estimator. In the particular case
of MSE, his work allows the derivation of the highest lower bound
on MSE (BB) since it takes into account the strongest formulation
of unbiasedness, that is to say unbiasedness over an interval of
parameter values including the selected value. Unfortunately the
BB is generally incomputable [7]. Therefore, since then, numer-
ous works [5][6][8][9] have been devoted to deriving computable
approximations of the BB. These works have shown that in non-
linear estimation problems three distinct regions of operation can
be observed. In the asymptotic region, the MSE is small and, in
many cases, close to the Small-Error bounds (CRB). In the a priori
performance region where the number of independent snapshots
and/or the SNR are very low, the observations provide little infor-
mation and the MSE is close to that obtained from the prior knowl-
edge about the problem. Between these two extremes, there is an

additional ambiguity region, also called the transition region. In
this region, the MSE of MLEs usually deteriorates rapidly with re-
spect to Small-Error bounds and exhibits a threshold behavior cor-
responding to a ”performance breakdown” highlighted by Large-
Error bounds (BB)[6][9][10].

As a result, the search for an easily computable but tight ap-
proximation of the BB is still a subject worth investigation. Indeed,
the accurate knowledge of the BB should allow a better prediction
of the SNR value at the start of the transition region and avoid mis-
leading conclusions - too optimistic - being drawn from the com-
putation of the CRB at low SNR. As a contribution to this research
effort, we present in this paper a formalism (see §3) that allows not
only the derivation of a general class of BB approximations but
also gives a clear interpretation of these approximations (includ-
ing all previously derived bounds). This formalism suggests a new
practical approximation of the BB, whose computational complex-
ity does not exceed that of the CRB, but seems tighter than existing
approximations (see §4).

2. OVERVIEW OF BARANKIN BOUND LITERATURE

For the sake of simplicity we will focus on the estimation of a sin-
gle real function g (θ) of a single unknown real deterministic pa-
rameter θ. In the following, unless otherwise stated, x denotes the
random observations vector, Ω the observation space, and fθ (x)
the probability density function (p.d.f.) of observations depending
on θ ∈ Θ, where Θ denotes the parameter space. Let FΩ be the
real vector space of square integrable functions over Ω.

2.1. On lower bounds and norm minimization

A fundamental property of the MSE of a particular estimator ĝ (θ0) (x)
∈ FΩ of g (θ0), where θ0 is a selected value of the parameter θ, is
that it is a norm associated with a particular scalar product 〈 | 〉

θ
:

MSEθ0

[
ĝ (θ0)

]
=
∥∥∥ĝ (θ0) (x) − g (θ0)

∥∥∥2

θ0

〈g (x) | h (x)〉
θ0

= Eθ0 [g (x)h (x)] =

∫
g (x)h (x) fθ0 (x) dx.

In the search for a lower bound on the MSE, this property allows
the use of two equivalent fundamental results: the generalisation
of the Cauchy-Schwartz inequality to Gram matrices (generally
referred to as the “covariance inequality” [9]) and the minimiza-
tion of a norm under linear constraints [7] [8]. Nevertheless, we
shall prefer the ”norm minimization” form as its use provides a
better understanding of the hypotheses associated with the differ-
ent lower bounds on the MSE. Then, let U be a Euclidean vector
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space of any dimension (finite or infinite) on the body of real num-
bers R which has a scalar product 〈 | 〉. Let (c1, . . . , cK) be a
free family of K vectors of U and v = (v1, . . . , vK)T a vector of
RK . The problem of the minimization of ‖u‖2 under the K linear
constraints 〈u | ck〉 = vk , k ∈ [1, K] then has the solution [7][8]:

min
{
‖u‖2

}
= vT G−1v for uopt =

K∑
k=1

αkck

(α1, . . . , αK)T = α = G−1v, Gn,k = 〈uk | cn〉

(1)

2.2. Application to Barankin Bound derivation

As introduced by Barankin, the ultimate constraint that an unbi-

ased estimator ĝ (θ0) (x) of g (θ) should verify is to be unbiased
for all possible values of the unknown parameter:

Eθ

[
ĝ (θ0) (x)

]
= g (θ) , ∀θ ∈ Θ. (2)

In this case the problem of interest becomes:

min
{

MSEθ0

[
ĝ (θ0)

]}
under Eθ

[
ĝ (θ0) (x)

]
= g (θ) , (3)

∀θ ∈ Θ and corresponds to the search for the locally-best un-
biased estimator. This problem can be solved by applying the
work of Barankin [4] that has been supported by many other stud-
ies [6][7][8] aimed not only at expressing the principal results of
Barankin’s (mathematical) theory in a form accessible to most en-
gineers, but also at obtaining “computable” lower bounds approx-
imating the BB. In the following we provide a synthesis of these
studies, highlighting all the key results (4) (5) (7) (8) (9a-d). If

ĝ (θ0) (x) is an unbiased estimator of g (θ) in the Barankin sense
(2), then:

Eθn

[
ĝ (θ0) (x)

]
= g (θn) =

∫
ĝ (θ0) (x) fθn (x) dx, ∀θn ∈ Θ.

Consequently, ∀w ∈ RN :

Eθ0

[(
ĝ (θ0) (x) − g (θ0)

)( N∑
n=1

wn
fθn

(x)

fθ0
(x)

)]
=

N∑
n=1

wn (g (θn) − g (θ0))

Therefore, according to (1), the minimization of MSEθ0

[
ĝ (θ0)

]
under the constraint as above - valid for any subset of test points
{θn}[1,N] of Θ and w ∈ RN - implies [4]:

MSEθ0

[
ĝ (θ0)

]
≥ lim

N→∞
sup

w,{θn}[1,N ]

[
N∑

n=1

wn (g (θn) − g (θ0))

]2
Eθ0

[(
N∑

n=1

wn
fθn

(x)

fθ0
(x)

)2
]

(4)
which is the original form of the BB on MSE. A more concise form
can be derived by noting that [6]:[

N∑
n=1

wn(g(θn)−g(θ0))

]2
Eθ0

[(
N∑

n=1
wn

fθn
(x)

fθ0
(x)

)2] =
(wT ∆g)2

wT Rw
≤ ∆gT R−1∆g

Rn,m =

∫
fθn

(x)fθm
(x)

fθ0
(x)

dx, ∆gn = g (θn) − g (θ0)

(5)

- since
(wT ∆g)2

wT Rw
≤ ∆gT R−1∆g and reaches its maximum

value for w = λR−1∆g - which leads to the “reduced” form
of the BB [6]:

MSEθ0

[
ĝ (θ0)

]
≥ lim

N→∞
sup

{θn}[1,N ]

{
∆g

T
R

−1
∆g
}

(6)

It is then worth noting that (5) is also the solution of:

min
{

MSEθ0

[
ĝ (θ0)

]}
under Eθn

[
ĝ (θ0) (x)

]
= g (θn) (7)

where {θn}[1,N] ∈ Θ, which corresponds to the fact that the great-
est lower bound on the MSE for a finite number of test points
{θn}[1,N] is obtained by simply expressing the “unbiased” con-
straint at the test points [6]. Consequently the unbiased and locally

best estimator ĝ (θ0)opt
satisfies (5)[8]:

lim
N−→∞

∣∣∣∣∣∣∣∣∣
R
(
w
λ

)
= ∆g

ĝ (θ0)opt
(x) − g (θ0) =

N∑
n=1

wn

λ

fθn
(x)

fθ0
(x)

MSEθ0

[
ĝ (θ0)

]
≥ ∆gT R−1∆g = ∆gT

(
w
λ

)
(8)

that leads to, defining 1
λ

= dθ = θn+1 − θn, [7]:∫
K
(
θ, θ

′
)
w
(
θ
′
)
dθ

′ = g (θ) − g (θ0) (9a)

K
(
θ, θ

′
)

=

∫
fθ (x) fθ′ (x)

fθ0 (x)
dx (9b)

ĝ (θ0)opt
(x) − g (θ0) =

∫
fθ (x)

fθ0 (x)
w (θ) dθ (9c)

MSEθ0

[
ĝ (θ0)

]
≥

∫
(g (θ) − g (θ0))w (θ) dθ (9d)

Unfortunately, in most practical cases, it is impossible to find ei-
ther the limit of (6) or an analytical solution of (9a) to obtain an

explicit form of ĝ (θ0)opt
and of the lower bound on the MSE,

which somewhat limits its interest. Therefore, the search for an
easily computable but tight approximation of the BB is a subject
of great theoretical and practical importance.

3. APPROXIMATING THE BARANKIN BOUND

So far, all previous works dedicated to assessing the true behaviour
of the BB at low SNR (Large-Error bounds) [6]-[9] can be reduced
to the exploitation of the norm minimisation lemma (1) associated
with a basic discretisation (7) of Barankin unbiasedness definition
(2). Such a basic discretisation is sub-optimal in the scope of BB
approximation tightness. Indeed, there is a set H of numerous
functions h (θ) of various behaviour that take the same values for a

given set of test points
(
h (θn) = g (θn) , {θn}[1,N]

)
. Therefore,

the lower bound provided by such a discretisation (7) may not be
a tight BB approximation since it is a lower bound for the whole
set of functions H, except when the number of test points θn tends
to infinity as H tends to reduce to g (θ) only. As a consequence,
in order to reduce the set H and thereby increase the tightness,
it seems intuitively more efficient to resort to constraints that are
more discriminating, such as lth order derivative constraints. This
leads to a straightforward, but to our best knowledge, novel method
of approximating the BB.
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The development of this method requires that both fθ (x) and g (θ)
can be approximated by piecewise series expansions of order Ln,
that is to say the parameter space Θ can be partitioned in N real
sub-intervals In over which - θn + dθ ∈ In -:

g(θn + dθ) = g(θn) +
Ln∑
l=1

∂lg(θn)

∂lθ

dθl

l!
+ o
(
dθl
)

fθn+dθ (x) = fθn (x) +
Ln∑
l=1

∂lfθn
(x)

∂lθ

dθl

l!
+ ox

(
dθl
)

and that the integrals
∫ (

∂lfθ(x)

∂lθ

)2
1

fθ(x)
dx converge and define

piecewise continuous functions of θ on Θ, for all θ ∈ Θ, to al-
low order of integration and differentiation interchange [9]. Then,
some straightforward calculations show that, on every sub-interval
In, a possible general discretisation of Barankin unbiasedness de-
finition (2) is:

Eθn+dθ

[
ĝ (θ0) (x)

]
= g (θn + dθ) + o

(
dθ

Ln

)
(10)

provided the Ln + 1 linear constraints are verified:∫
ĝ (θ0) (x)

∂lfθn (x)

∂lθ
dx =

∂lg(θn)

∂lθ
, l ∈ [0, Ln]

or equivalently:

Eθ0

⎡⎣(ĝ (θ0) (x) − g (θ0)
) ∂lfθn

(x)

∂lθ

fθ0 (x)

⎤⎦=

[
∂l (g(θ) − g(θ0))

∂lθ

]
θn

(11)

Thus, the set of
N∑

n=1

(Ln + 1) constraints (11) deriving from the

N piecewise discretisation of (2) defines a given approximation of

the BB denoted by B̂B
I1,...,IN

L1,...,LN
(1):

B̂B
I1,...,IN

L1,...,LN
= vT G−1v

v =
[
vT

1 , ..., vT
N

]T
, G =Eθ0

[
ccT
]

vn =
[
g(θn) − g(θ0),

∂g(θn)
∂θ

, ...,
∂Ln g(θn)

∂Lnθ

]
c =

[
cT
1 , ..., cT

N

]T
, cn =

[
fθn (x) ,

∂fθn
(x)

∂θ
, ...,

∂Ln fθn
(x)

∂Lnθ

]
(12)

Moreover, if min {L1, ..., LN} tends to infinity, a straightforward

exercise in mean square convergence establishes that B̂B
I1,...,IN

L1,...,LN

converges in mean-square to the BB. An immediate generalisation
of expression (12) consists of taking its supremum over existing
degrees of freedom (sub-interval definitions and series expansion
orders). Lastly, it is worth noting that the proposed formalism al-
lows exploration of the unbiasedness assumption from its weakest
to its strongest formulation.

3.1. A different look at existing BB approximations

Designating the BB approximations as:
• N -piecewise BB approximation of homogeneous order L, if on
all sub-intervals In the series expansions are of the same order L,
• N -piecewise BB approximation of heterogeneous orders
{L1, ..., LN}, if otherwise,
we can provide a new look at previously derived MSE lower bounds:

• the CRB [2] is a 1-piecewise BB approximation of homogeneous
order 1, since the constraints are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

fθ0 (x)

]
=

∂g (θ0)

∂θ

• the Bhattacharyya bound [1] of order L is a 1-piecewise BB
approximation of homogeneous order L, since the constraints are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

⎡⎣ĝ (θ0) (x)

∂lfθ0
(x)

∂lθ

fθ0 (x)

⎤⎦ =
∂lg (θ0)

∂lθ

• the Hammersley-Chapman-Robbins bound (HCRB) [5] is the
supremum of a 2-piecewise BB approximation of homogeneous
order 0, over a set of constraints of type:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ1

[
ĝ (θ0) (x)

]
= g (θ1)

• the McAulay-Seidman bound (MSBN ) [6] with N test points is
an N + 1-piecewise BB approximation of homogeneous order 0,
since the constraints are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθn

[
ĝ (θ0) (x)

]
= g (θn)

• the Hybrid Barankin-Bhattacharyya bound (HBBL,N ) [9] is an
N+1-piecewise BB approximation of heterogeneous order {L, 0, ..., 0},
since the constraints are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

⎡⎣ĝ (θ0) (x)

∂lfθ0
(x)

∂lθ

fθ0
(x)

⎤⎦ = ∂lg(θ0)

∂lθ

Eθn

[
ĝ (θ0) (x)

]
= g (θn)

3.2. A new practical BB approximation

The formalism introduced suggests a very straightforward prac-

tical BB approximation - denoted B̂B
N

1 in the following -: the
N +1-piecewise BB approximation of homogeneous order 1 char-
acterized by the set of constraints:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

fθ0
(x)

]
= ∂g(θ0)

∂θ

Eθn

[
ĝ (θ0) (x)

]
= g (θn) , Eθn

[
ĝ (θ0) (x)

∂fθn
(x)

∂θ

fθn
(x)

]
= ∂g(θn)

∂θ

Indeed it appears to be the generalization of the CRB when the
parameter space is partitioned in more than one sub-interval, as
well as the generalization of the usual BB approximation used in
the open literature, i.e. the McAulay-Seidman form of the BB[6].
Therefore its computational complexity doesn’t exceed that of these
two bounds. In the next section we will show using a standard
spectral analysis problem - single tone parameter estimation - that
this new BB approximation is tighter than existing ones.

4. SINGLE TONE THRESHOLD ANALYSIS

Let the complex observation vector x be modelled by:

x = sψ(θ0) + n

ψ(θ0)=
[
1, ej2πθ0 , ..., ej(K−1)2πθ0

]T
, θ0 ∈ ]−0.5, 0.5[
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where θ0 is the unknown parameter to estimate, s2 is the SNR
(s > 0) and n is a complex circular Gaussian noise, with zero
mean and covariance matrix Cn = Id. Therefore the p.d.f. of the
observations is given by:

fθ0(x) =
e−‖x−sψ(θ0)‖2

πK

For any set of N + 1 test points {θn}[1,N+1], among the existing
lower bounds, only the MSBN and the HBB1,N are of a complex-

ity comparable with B̂B
N

1 . Nevertheless, we also include in the
comparison the CRB and the HCRB as they are the simplest rep-
resentative of respectively Small Errors bounds and Large Errors
bounds. All mentioned lower bounds can be computed from the

components of B̂B
N

1 - (12 ) with rearrangement -:

v =

[
∆g

T
,

(
. . . ,

∂g(θn)

∂θ
, . . .

)T
]T

, G =

[
R C

CT F

]
.

Noting that:

fθn(x)fθl
(x)

fθ0(x)
= e

2s2 Re{[ψ(θn)−ψ(θ0)]H [ψ(θl)−ψ(θ0)]}
f(x)

f(x) =
e−‖x−s[ψ(θn)+ψ(θl)−ψ(θ0)]‖2

πK
,

R, C, F matrices are given by:

Rn,l = e2s2 Re{[ψ(θn)−ψ(θ0)]H [ψ(θl)−ψ(θ0)]}

Cn,l = 2s2 (Rn,l) Re
{

[ψ (θn) − ψ (θ0)]
H ∂ψ(θl)

∂θ

}
Fn,l = 2s2 (Rn,l)⎡⎣ Re

{
∂ψ(θl)

H

∂θ
E
[
(x−sψ (θl)) (x−sψ (θn))T

]
∂ψ(θn)∗

∂θ

}
+

Re
{

∂ψ(θl)
H

∂θ
E
[
(x−sψ (θl)) (x−sψ (θn))H

]
∂ψ(θn)

∂θ

} ⎤⎦
E [x] = s [ψ (θn) + ψ (θl) − ψ (θ0)]

E
[
xxT

]
= E [x] E [x]T

E
[
xxH

]
= Id + E [x] E [x]H

E
[
(x−sψ (θl)) (x−sψ (θn))T

]
= E

[
xxT

]
− sE [x]ψ (θn)T

−sψ (θl)E [x]T + s2ψ (θl) ψ (θn)T

E
[
(x−sψ (θl)) (x−sψ (θn))H

]
= E

[
xxH

]
− sE [x]ψ (θn)H

−sψ (θl)E [x]H + s2ψ (θl) ψ (θn)H

where xT ,x∗,xH denotes respectively the transpose, the conju-
gate, the transpose-conjugate of x.
We consider the reference estimation case where θ0 = 0. For

the sake of fair comparison with the HCRB, the MSBN , HBB1,N ,

B̂B
N

1 are computed as supremum over the possible values of
{θn}[1,N+1]. For the sake of simplicity {θn}[1,N+1] = {0, dθ,−dθ}.
Figure (1) shows the evolution of the various bounds as a function
of SNR in the case of K = 10 samples. The variance of the MLE
is also shown in order to compare the threshold behaviour of the

bounds. As intuitively expected, the proposed B̂B
N

1 bound results
in a tighter BB approximation than the other bounds and allows a
better prediction of the SNR threshold value.
Additionally, the present results suggest that the true value of the
BB may be significantly underestimated by existing approxima-
tions, questioning previously drawn conclusions on MLE variance
prediction by Deterministic Large Error Bounds.
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Fig. 1. Comparison of MSE lower bounds versus SNR

5. CONCLUSION

We have proposed a formalism that allows the derivation of a gen-
eral class of BB approximations and more particularly of a new
promising practical approximation, since its computational com-
plexity does not exceed that of the CRB, but seems closer to the
BB than existing approximations.
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