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ABSTRACT

We present an algorithm for estimating entropy from high-

dimensional data based on Kozachenko-Leonenko nearest neighbor

estimator. The problem of finding all nearest neighbors is approx-

imatively solved using a best-bin first (BBF) bottom-up k-D tree

traversal. Our main application is evaluating higher-order mutual in-

formation (MI) image similarity criteria that, unlike standard scalar

MI, are directly usable for vector (e.g. color) images and can take

into account neighborhood information. As during the optimization

the MI criterion is often evaluated for very similar images, it is ad-

vantageous to update the k-D tree incrementally. We show that the

resulting algorithm is fast and accurate enough to be practical for the

image registration application.

1. INTRODUCTION

Mutual information (MI) measures the amount of independence be-

tween two random variables F and G. It can be defined from the joint

and marginal entropies

I(F, G) = H(F) + H(G) − H(F, G) (1)

Besides numerous other applications, it has been used as an image

similarity criterion for multimodal image registration [1, 2, 3, 4],

with the samples of the random variables F, G usually correspond-

ing to scalar (d = 1) pixel intensity values. Several attempts

have been made to extend the MI registration framework to higher-

dimensionality (vector, d > 1) data, especially in order to incorpo-

rate spatial relationships [5]. The main difficulty is overcomming the

inadequacy of the standard and almost exclusively used histogram-

based estimator for high-dimensional data, the “curse of dimension-

ality”. The histogram estimator can be partly improved using vector

quantization or adaptive binning [6], or alternative estimators can be

used [7, 8, 9] that often work better for high-dimensional data.

In particular, the Kozachenko-Leonenko (KL) entropy estima-

tor [10, 11] based on nearest neighbor (NN) distances works well

for estimating not only standard scalar MI (d = 1) but also color MI

(d = 3) and neighborhood MI (d = 25) [12] and these new criteria

are superior to standard similarity measures such as SSD. Computa-

tional bottleneck of the KL estimator is the all-NN search, with com-

plexity O(dN2) for the brute-force algorithm, which is unacceptably

high for typical image registration application, where the number of

samples (pixels) N = 105 ∼ 106. Therefore, in [12], a relatively

crude approximation is used, treating samples by batches.

The main contribution of this article is to present an efficient

all-NN search algorithm based on k-D trees and the best-bin first

(BBF) approach [13], and an incremental strategy of the tree update.
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Together with an improved robustification of the KL estimator, this

leads to a practically usable entropy and MI estimation algorithm

even for high-dimensional (d ≈ 20) problems with large number of

samples (N ≈ 106).

2. ENTROPY ESTIMATION

Given a set of N samples xi ∈ R
d taken from an unknown pdf p(x),

we define the NN distance

�i = min
j �=i

‖xi − xj‖∞
We have to adapt the KL estimator [10, 11] slightly for the �∞ (max-

imum) norm. (The maximum norm was chosen for better compat-

ibility with the NN search algorithm that partitions the space into

hyper-rectangles. However, the difference is small.) The probability

Qi(r) = P(ρi > r) of the neighborhood of xi of size r being empty

satisfies

Qi(0) = 1 and Qi(r + dr) = Qi(r)
`
1 − p(xi)dV

´(N−1)

which leads to

Qi(r) = exp
`−2(N − 1) d (2r)d−1p(xi)

´
where V = (2r)d is the neighborhood size. The expected value of

log � is

〈log �〉 =

Z ∞

0

log r
dQ

dr
dr = − log

`
2(N − 1) d p(xi)

´ − γ

where we have used the identity
R ∞
0

log(αz) e−z dz = log α − γ
and where γ ≈ 0.577 is the Euler constant. This directly yields the

local density logarithm estimate

− ̂log p(xi) = d log �i + γ + log 2d(N − 1) (2)

and consequently also the global entropy estimate

bH = − 1

N

NX
i=1

̂log p(xi) (3)

Entropy estimation can be improved using k-th NN (k > 1).

However, to find further NN is computationally expensive and thus

was not used here.

2.1. MI estimation

MI can be estimated through entropy from (1). In image registration,

F represents the fixed image and H(F) is therefore constant. Often,

also H(G) corresponding to the moving image can be assumed ap-

proximately constant, saving computational effort and avoiding can-

cellation errors, at the expense of some accuracy loss. Estimating

MI directly is possible [14] but the algorithm is less statistically and

computationally efficient.
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2.2. Robust KL entropy estimator

For real data identical samples can occur with non-zero probability

and the estimator (2), ρi �→ ̂log p(xi) must be modified appropri-

ately. If ρi < ε for an a priori chosen ε, we assume that quantization

has taken place and the original samples share the same bin. The pdf

is assumed constant inside each quantization bin. Furthermore, we

require the estimate of p(xi) to be continuous in ρi and proportional

to ki, the number of samples in the bin. This yields the following

robustified estimate to be plugged into (3)

− ̂log p(xi) =

(
d log �i + C for ρi ≥ ε

log
`
εd/ki) + C for ρi < ε

where C = γ + log 2d(N − 1). Alternatively, a small amplitude

perturbation can be added to the input data [14].

3. BBF K-D TREE WITH UPDATING

Finding the NN for a query point in 2D is a well-studied prob-

lem [15, 16, 17, 16], less so finding all-NN within a set. The avail-

able methods rarely have acceptable performance for d 
 2. Dy-

namic methods exist [18] but no algorithm we are aware of can take

advantage of our specific update pattern, considering instead inserts

and deletes [19], or predetermined trajectories [20].

We construct a binary tree similar to the k-D tree. Each leaf

contains at most L samples xi. Leaves are implemented using inter-

nal chaining hash-tables [17] for update efficiency, storing indices to

the original data matrix. Each node contains the number of samples

in the subtree of which it is a root and the corresponding hyper-

rectangle (bounding box) B. The bounding boxes are loose, filling

the parent box completely and starting with R
d for the root. Non-

leafs contain also the partitioning dimension m and value ξ; the m-

th coordinate xm
i of all points in the left resp. right subtree satisfies

xm
i < ξ, resp. xm

i ≥ ξ. In this way, identical samples end-up in the

same leaf.

During recursive construction, tight bounding boxes are also

maintained. The longest dimension of each box is chosen as the

partitioning dimension m, with ξ calculated as a median (using in-

complete ordering [17]) of the dimension m, so that each subtree

receives half of the samples (except when many equal values are

present). The tree construction complexity is O
`
dN log(N/L)

´
.

3.1. All-NN search

The task is to find the NN distance or the multiplicity for all points

in the tree. Unlike almost all other search methods that start at the

root, we take advantage of the fact that all query points q are in

the tree and that a NN is most likely in the same leaf, or some of

the branches close by. For each query point q in leaf Q, we shall

perform an A∗-like search of the tree rooted at Q.

The nodes R to be visited are kept in a priority queue (PQ,

implemented as a heap [17]), as in the best-bin-first (BBF) ap-

proach [13], partially ordered according to ηR, a minimum possible

distance between q and any point of the subtree rooted in R. Note

that ηR is the distance from q to B(R) when going from parent to

son, and the distance to its complement R
d\B(R) otherwise. This

way, closest boxes that are more likely to contain the NN are consid-

ered first.

The currently best NN distance ρbest is maintained and used for

pruning nodes with η > ρbest that cannot bring improvement. When

a non-leaf is taken from the PQ head, the two nodes linked to it not

Table 1. The tree construction (top) and all-NN search (bottom)

times in seconds for N = 105 uniformly distributed samples as

a function of the dimension d and the leaf size L. The best search

times for each d are set in boldface.

d/L 5 10 20 30 40 50
1 4.8 4.2 3.7 3.3 3.3 3.0

2 5.8 5.1 4.7 4.2 4.2 3.8

3 6.5 5.8 5.2 4.7 4.7 4.3

5 7.7 6.9 6.2 5.7 5.6 5.1

10 11 10 9 8 8 7

15 13 12 11 10 10 9

20 16 15 14 12 12 11

d/L 5 10 20 30 40 50
1 1.9 1.6 2.1 2.9 2.9 5.8

2 6.5 5.1 5.4 6.2 6.2 10.1

3 17.6 14.2 13.7 14.4 14.4 20.4

5 75.0 62.0 57.0 57.8 57.9 71.7

10 873.6 671.8 588.0 563.3 563.5 632.0

15 4049 3130 2770 2714 2714 3086

20 18155 13479 11372 10591 10595 11166

yet visited are inserted to the PQ. When a leaf is taken, all points

contained in it are examined. The search is terminated if the PQ

is empty or if a predetermined number M of leaf points has been

considered. In leaf Q, which is searched first, we also test whether q
is multiple; if it is we terminate the search.

In low dimensions d, often only a few neighboring nodes of the

leaf Q need to be searched. For higher d the all-NN search com-

plexity is O(dNM), with the parameter M governing the trade-off

between accuracy and speed.

3.2. Incremental update

Consider the task of updating a tree built from samples xi to be valid

also for samples x′
i, assuming that the change x′

i − xi is small. To

minimize changes in the tree structure, we will allow the sons of

a parent containing Np points to have up to (1/2 + δ)Np points, as

in the pseudo k-D tree [20].

The update algorithm first iterates over all points in the tree. If

a point q is no longer contained in the bounding box of its origi-

nal leaf, we go up the tree until an ancestor node is found that is

big enough to contain q. We then go down using the partitioning

information (m,ξ) to find a leaf into which q belongs.

The second phase consist of traversing the tree depth-first,

checking for unbalanced subtrees. If such a subtree is found, it is

freshly rebuilt as described in Section 3.

If the changes are small, almost no rebuilding is needed. In the

worst case, the whole tree needs to be rebuilt.

4. EXPERIMENTS

All experiments were run on a 2 GHz Pentium IV computer using

an experimental Ocaml implementation. In the first experiment (Ta-

ble 1) we attempt to determine the optimum leaf size (parameter L)

Assuming that the all-NN search will prevail, the optimum L seems

III ­ 805



10
2

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

10
2

10
4

10
6

N

tim
e 

[s
]

d=1 build
d=1 search
d=1 brute−force
d=10 build
d=10 search
d=10 brute−force

Fig. 1. Times needed for the tree construction, tree-based all-NN

search and brute-force all-NN search as a function of N for d =
1, 10.

Table 2. The tree update time Tu and the all-NN search times on the

updated tree (T1) and on a freshly built tree (T2) as a function of the

perturbation amplitude σ and the parameter δ, for d = 5, N = 105.

σ δ Tu T1 T2

0.01 0 5.9 57 57

0.01 0.1 0.3 57 57

0.01 0.2 0.3 57 57

0.01 0.3 0.3 57 57

0.1 0 6.3 59 59

0.1 0.1 0.9 59 60

0.1 0.2 0.7 59 60

0.1 0.3 0.7 59 60

1 0 7.3 69 69

1 0.1 3.2 70 69

1 0.2 2.3 76 69

1 0.3 1.7 82 69

to be around L = 10 for d = 1, gradually raising to L = 30 for

d = 20.

The second experiment (Figure 1) compares the time needed

for the tree construction and our all-NN search with the brute-

force O(N2) all-NN search. The optimal L determined above was

used. The results are identical since no search truncation was used,

M = ∞. The tree approach is faster for all N . Brute-force search

was not performed for the highest N since it would be too time con-

suming.

The third experiment (Table 2) studies the effect of the maxi-

mum permitted tree unbalancement δ for d = 5 and N = 105.

We performed the tree update after adding random perturbation uni-

formly distributed in [−σ, σ]d to the original uniform samples from

[−1, 1]d. We measure the update time and the all-NN search time

on the updated tree. Updating the tree with δ ≥ 0.1 is always faster

than building it anew, which takes 5 s. Since only small and medium

amplitude updates are expected in our application, we have chosen

δ = 0.3 which does not increase the all-NN search time significantly.

Reducing the parameter M can reduce the all-NN search time at

the expense of accuracy of the NN distance estimation. We have in-

vestigated this trade-off for multidimensional unit variance normally

Table 3. The all-NN search times (top row) and MSE of the en-

tropy estimator (bottom row) as a function of the dimension d and

the maximum number of visited points M for N = 105 for normally

distributed data. Bold entries correspond to relative accuracy better

than 2 %.

d/M 10 102 103 104 105

1 5.9 6.2 6.2 6.2 6.2

0.05 0.0069 0.0059 0.0043 0.0036
2 7.5 10.2 10.2 10.2 10.2

0.18 0.006 0.0058 0.0045 0.0035
3 8.8 19.6 20.0 20.0 20.0

0.39 0.097 0.083 0.0070 0.0055
5 11.3 52.8 83.3 83.4 83.5

1.03 0.097 0.024 0.020 0.020
10 17.7 108 556 1181 1198

3.02 1.14 0.076 0.053 0.049
15 24.0 156 909 4902 6114

4.67 2.42 0.72 0.14 0.12
20 45.8 176 960 7893 17280

6.03 4.67 2.05 0.69 0.52

distributed data with known entropy H = (d/2) log(2πe). (Ta-

ble 3). The value of M needed for a given accuracy increases with

the dimensionality d: for d ≤ 10 examining M = 103 points yields

a relative MSE smaller than 1 %.

4.1. Image similarity criterion evaluation

Finally, we apply the new estimator to two image similarity evalu-

ation tasks, using the parameters determined in the previous exper-

iments. First, we take the red channel of the Lena image (Figure 2,

left) and calculate the scalar MI with respect to the rotated version

of the green channel of the same image.

Second, we shall the color Mandrill image (Figure 2, right) and

the a colormap-rotated version of the same image [12], using a color

MI criterion [12] (Figure 3).

This corresponds to entropy estimation with dFG = 2 in the first

case and dFG = 6 in the second case. All images were pre-rotated

by a small amount to avoid singularity effects due to discretization.

In each case, images were cropped after rotation to avoid boundary

issues. The results were not much sensitive to the parameter ε; value

1 was used, corresponding to the quantization. We also found that

it is not necessary to update the moving image entropy and it even

leads to better (less noisy) results. Both experiments were repeated

for different sizes of the original images. To mimic the conditions

of image registration, while maintaining reproducibility, we chose

to evaluate the criteria for angles from 10◦ to 0◦ decreasing by 0.1◦.

Average evaluation time is reported to distribute the cost of the initial

tree construction (Table 4). We see that the evaluation times are quite

acceptable for off-line use.

5. CONCLUSIONS

Estimating high-dimensional MI and thus entropy using the KL es-

timator needs a fast all-NN search algorithm. We have shown that

such all-NN search performed using a k-D tree can be accelerated,

especially in higher dimensions and at the expense of a small loss

of accuracy, by considering the k-D tree nodes in the order of the
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Table 4. Average times in seconds to evaluate the scalar and color

MI criteria depending on the image size. Percentage of the MI evalu-

ation time with respect to the total evaluation time (including image

rotation).

size Npix Tscalar % Tcolor %

104 × 104 10816 0.2 75 2.1 91

206 × 206 42436 1.0 77 12.1 93

410 × 410 168100 6.2 83 61.7 94

likelihood (best-bin-first) and truncating the search as needed. Sec-

ond major improvement concerns dropping the requirement of exact

balancing of the k-D tree and updating it instead of rebuilding each

time.

The resulting estimator keeps the good properties of the KL en-

tropy estimator, the suitability of which for image registration appli-

cation has been shown previously [12]. However, unlike [12], almost

exact NN search has now become computationally feasible, improv-

ing the accuracy of the estimator. It is a practically usable method of

estimating high-dimensional entropy and MI. Further acceleration is

likely by reimplementing the presented estimator in C and combin-

ing it with the batch idea [12].
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