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ABSTRACT

Linear regression with high uncertainties in the measure-
ments, model structure and model permanence is a major chal-
lenging problem. Standard regression techniques are based on
optimizing a certain performance criterion, usually the mean
squared error, and are highly sensitive to uncertainties. Regu-
larization methods have been developed to address the prob-
lem of measurement uncertainty, but choosing the regular-
ization parameter under severe uncertainties is problematic.
Here we develop an alternative regression methodology based
on satisficing rather than optimizing the performance criterion
while maximizing the robustness to uncertainties. Uncertain-
ties are represented by info-gap models which entail an un-
bounded family of nested sets of measurements parameter-
ized by a non-probabilistic horizon of uncertainty. We prove
and demonstrate that the robust-satisficing solution is differ-
ent from the optimal least squares solution and that the info-
gap approach can provide higher robustness to uncertainty.

1. INTRODUCTION

Linear regression analysis is based on a set of input/output
observations which are expected to be linearly related. While
linear regression methods are highly developed, their applica-
bility to problems with severe uncertainties is still a challenge.
Uncertainties may arise from three major sources: (i) mea-
surement uncertainty, which accounts for inaccuracies in the
observations, (ii) model uncertainty, which accounts for pos-
sible non-linear effects, and (iii) structural uncertainty, which
accounts for potential changes over time in the parameters
of the linear model or appearance of non-linear components.
Standard linear regression techniques are based on optimizing
a performance criterion, usually the mean squared error, but
may fail to provide high, or even acceptable, performance for
new observations. When the condition number of the mea-
surement matrix is high, the least squares solution is greatly
affected by uncertainties in the measurements and may differ
considerably from the underlying linear model. Regulariza-
tion methods have been developed to systematically reduce
the condition number, but the choice of the regularization pa-
rameter is not easy under severe uncertainties.

Linear regression is usually performed to derive a model
that can be used to make predictions of the future, and should
therefore be designed to confront future surprises. Surprises
are data generating processes differing from the processes
which produced the data used to estimate the model. Sur-
prises are structural changes in the system which arise from
market changes, from technological innovations, or from dis-
coveries of any sort. By definition, nothing in historical data
can reveal anything about future surprises.

Surprises are a “true uncertainty” in the sense of Frank
Knight [5] who was the first to make a clear distinction be-
tween risk, which involves known probability measures, and
what Knight called true uncertainty where the underlying dis-
tributions are unknown.

In this paper we use info-gap models to represent uncer-
tainty [1]. An info-gap model is an unbounded family of
nested sets of events. There are no measure functions and
there is no worst case. Info-gap models provide a stark and
minimalistic representation of ignorance of future surprises.

A basic theorem of info-gap theory establishes a trade-off
between fidelity to the historical data and robustness against
info-gaps. Furthermore, maximization of fidelity (e.g. least
squares estimation) has zero robustness to info-gaps. Robust-
ness is obtained only by relinguishing fidelity. These proper-
ties are demonstrated in three theorems and an example.

2. LINEAR REGRESSION OF HIGHLY UNCERTAIN
DATA

The regression. Consider the linear regression:

yi = cT xi, i = 1, . . . , K, yi ∈ �1, xi ∈ �N (1)

Denote y = (y1, . . . , yK)T and X = [x1, . . . , xK ]. Eqs.(1)
can now be succintly represented as XT c = y. The mean
squared error with regression coefficients c is:

S(y, X, c) =
1
K

K∑
i=1

(yi − cT xi)2 (2)

Our observations are ỹ = (ỹ1, . . . , ỹK)T , X̃ = [x̃i, . . . , x̃K ].
We would like to choose c so that S(ỹ, X̃, c) is small and ro-
bust to info-gaps in the data.
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Consider the following info-gap model for data variabil-
ity:

U(α, ỹ, X̃) =
{

y, X : |yi − ỹi| ≤ αvi, (3)

(xi − x̃i)T W−1
i (xi − x̃i) ≤ α2, i = 1, . . . , K

}
where α ≥ 0, vi > 0 and Wi is real, symmetric and positive
definite. vi and Wi are known.

Formulating the robustness. The robustness of regres-
sion c, with critical squared error Sc, is the greatest horizon of
uncertainty α up to which all data realizations have squared
error no greater than Sc:

α̂(c, Sc) = sup

{
α :

(
sup

y,X∈U(α,ỹ,X̃)

S(y, X, c)

)
≤ Sc

}
(4)

Denote the inner maximum in this expression by M(α). M(α)
increases as α increases, and the robustness is the greatest
value of α at which M(α) ≤ Sc. If M(α) is strictly mono-
tonic then it is the inverse of α̂(c, Sc):

M(α) = Sc if and only if α̂(c, Sc) = α (5)

The robust-satisficing regression, ĉ(Sc), maximizes the
robustness and satisfices the performance:

ĉ(Sc) = arg max
c

α̂(c, Sc) (6)

The nominally optimal regression, c�, minimizes the mean-
squared error based on the data:

c� = arg min
c

S(ỹ, X̃, c) (7)

Evaluating the robustness. M(α) is obtained when each
of the terms (yi − cT xi)2 in the sum in eq.(2) is maximal,
at horizon of uncertainty α. The maximum of (yi − cT xi)2

occurs when yi and cT xi are extremal: one max and the other
min. The extremal values of yi and cT xi are:

max
y,X∈U(α,ỹ,X̃)

yi = ỹi ± αvi (8)

max
y,X∈U(α,ỹ,X̃)

cT xi = cT x̃i ± α
√

cT Wic (9)

From this one finds:

M(α) =
1
K

K∑
i=1

[
|ỹi − cT x̃i| +

(
vi +

√
cT Wic

)
α
]2

(10)

= Fα2 + Gα + S̃ (11)

S̃ = S(ỹ, X̃, c) is the mean squared error of the data, and F
and G are both positive and defined as:

F =
1
K

K∑
i=1

(
vi +

√
cT Wic

)2

(12)

G =
2
K

K∑
i=1

|ỹi − cT x̃i|
(
vi +

√
cT Wic

)
(13)

Consider the quadratic polynomial:

Fα2 + Gα + S̃ − Sc = 0 (14)

The robustness is zero if S̃−Sc > 0. Otherwise the robustness
is the lowest non-negative root. From the relation between
roots, α1 and α2, and coefficients we know that (S̃−Sc)/F =
α1α2. Thus the roots are of opposite sign and the robustness
is:

α̂(c, Sc) =
1

2F

(
−G +

√
G2 + 4F (Sc − S̃)

)
(15)

3. CROSSING OF ROBUSTNESS CURVES

Proposition 1 Given: ỹ and X̃ are not identically zero.
Then: There exist a vector c different from c� and a value

of Sc such that α̂(c, Sc) = α̂(c�, Sc).

Proof of proposition 1: According to (5) it is enough to
show that there exist a vector c and a value of α such that
M(c, α) = M(c�, α).

We consider the function P (c, α) = M(c, α)−M(c�, α).
In light of eq.(11), P (c, α) is a parabola in α whose coeffi-
cients are functions of c. That is:

P (c, α) = A(c)α2 + B(c)α + C(c) (16)

were:

A(c) = F (c�) − F (c), B(c) = G(c�) − G(c) (17)

C(c) = S̃(c�) − S̃(c) (18)

and F, G, S̃ are as defined in (11)–(13).
We note that c� minimizes S̃ so S̃(c�) ≤ S̃(c) and C(c) ≤

0 for any c. Thus the equation defined by P (c, α) = 0 has a
non-negative root α× when A(c) > 0. Consider c = δc�

where 0 < δ < 1. Then for each Wi we have:

cT Wic = δ2c�T Wic
� < c�T Wic

� (19)

Consequently, from the definition of F (c) in eq.(12) we find
F (δc�) < F (c�). Hence A(δc�) > 0. Thus the robustness
curve for c = δc� crosses the robustness curve for c� for some
non-negative root α×.

4. ROBUSTNESS OF
REGULARIZED SOLUTIONS

Proposition 1 indicates that there are regression vectors which
become more robust than the optimal regression c� at some
level of the satisfying mean squared error (MSE) Sc. In this
section we evaluate the robust-satisfying properties of specific
sequences of parameterized regression vectors, and show that
they become more robust than the optimal regression c� at
some level of satisficing MSE Sc.
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4.1. Optimal Least Square Solution

The SVD of the observed matrix X̃
T

is given by:

X̃
T

= Ũ
T
Σ̃Ṽ =

r∑
i=1

ũiσiṽi (20)

where Ũ = [ũi, . . . , ũK ] ∈ �K×K and Ṽ = [ṽi, . . . , ṽK ] ∈
�M×N are ortho-normal matrices, Σ̃ = diag(σ̃1, . . . , σ̃N ) ∈
�N×N with σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃N ≥ 0, and the rank r ≤ N
is the number of strictly positive singular values σ̃i.

Since Ũ
T
Ũ = IK×K the correlation matrix of the data is

given by:

R̃ = X̃X̃
T

= Ṽ Σ̃
2
Ṽ

T ∈ �N×N (21)

The least-squares (LS) solution can be expressed in terms of
the SVD as:

cLS =
r∑

i=1

ũT
i ỹ

σ̃i
ṽi (22)

The resulting MSE is given by:

S̃LS = S̃(cLS)
∥∥∥ỹ − X̃

T
cLS

∥∥∥2

=
K∑

i=1

(ũT
i ỹ)2 (23)

The LS optimal solution is highly sensitive to measurement
errors since, from eq.(22), it depends on the inverse of the
singular values. Small singular values can dominate the solu-
tion and magnify errors in the measurement vector y. Thus it
is common to use regularization to stabilize the solution.

4.2. Crossing of Robustness Curves for Regularized Least
Square Regression

We consider two classes of parameterized regression vectors
obtained by: (a) Truncated SVD, and (b) Tikhonov regular-
ization [3].

4.2.1. Truncated Least Squares

The truncated-LS regression is obtained by truncating the LS
regression of eq.(22) at k ≤ r ≤ N :

ck =
k∑

i=1

ũT
i ỹ

σ̃i
ṽi (24)

The resulting MSE is:

S̃k = S̃(ck) =
∥∥∥ỹ − X̃

T
ck

∥∥∥2

=
K∑

i=k+1

(ũT
i ỹ)2 (25)

= S̃LS +
r∑

i=k+1

(ũT
i ỹ)2 (26)

which increases as more terms in the LS regression are trun-
cated.

Proposition 2 Given: the info-gap model of eq.(3) with Wi =
W and vi = µ, for all i.

Then: The robustness curves of all the different truncated-
LS regression vectors cross each other when the eigenvectors
of the shape matrix W are the same as the eigenvectors of the

correlation matrix of the observations R̃, i.e., W = Ṽ Σ2
W Ṽ

T

where ΣW = diag(σW1 , . . . , σWN
) where σWi is the ith sin-

gular value of W .

The proof of proposition 2 is not presented as it is similar
to the proof of proposition 3 which is included.

Note that the following weight matrices are special cases
of the weight matrix considered in proposition 2: (a) the cor-
relation matrix of the observations W = R̃, (b) the inverse

of the correlation matrix W = R̃
−1

, (c) the identity matrix
W = I , or (d) a non-negative combination of the above, i.e.,

W = β0I + β1R̃ + β2R̃
−1

with β1, β2, β3 ≥ 0.

4.2.2. Tikhonov Regularization

Tikhonov regularization stabilizes the optimal LS solution by
minimizing the combination of the MSE and the size of the

regression vector: min
[∥∥∥ỹ − X̃

T
c
∥∥∥2

+ λ2‖Lc‖2

]
. When

L = I the regularized regression vector with a given λ2 is:

cλ =
r∑

i=1

σ̃2
i

σ̃2
i + λ2

uT
i y

σi
vi (27)

The resulting MSE is:

S̃λ = S̃(cλ) =
∥∥∥ỹ − X̃

T
cλ

∥∥∥2

(28)

=
r∑

i=1

λ4

(σ̃2
i + λ2)2

(ũT
i ỹ)2 +

K∑
i=r+1

(ũT
i ỹ)2 (29)

Note that:

∂S̃λ

∂λ2
= 2λ2

r∑
i=1

σ̃2
i

(σ̃2
i + λ2)3

(uT
i y)2 > 0 (30)

Hence the MSE increases with λ2 and the minimum is achieved
for the optimal LS solution, cλ=0 = cLS.

Proposition 3 Given: the info-gap model of eq.(3) with Wi =
W and vi = µ, for all i.

Then: The robustness curves of any two regularized re-
gression vectors cλ1 �= cλ2 cross each other when the eigen-
vectors of the shape matrix W are the same as the eigen-
vectors of the correlation matrix of the observations R̃, i.e.,

W = Ṽ Σ2
W Ṽ

T
where ΣW = diag(σW1 , . . . , σWN

) where
σWi is the ith singular value of W .
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Proof of proposition 3. According to eq.(5) it is enough
to show that there is a non-negative α such that M(cλ1 , α) =
M(cλ2 , α). cλ1 �= cλ2 implies λ1 �= λ2 so with no loss
of generality we assume that λ1 < λ2. Hence, according
to eq.(30), S̃(cλ1) < S̃(cλ2), and thus M(cλ1 , α = 0) <
M(cλ2 , α = 0). Following the argument in the proof of
proposition 1, this relationship is reversed for some positive α

if F (cλ1) > F (cλ2) where, from eq.(12), F (cλ) =
(
µ +

√
cT
λ Wcλ

)2

.

Hence we need to evaluate cT
λ Wcλ which can be expressed:

cT
λ Wcλ = cT

λ Ṽ Σ2
W Ṽ

T
cλ =

r∑
i=1

σ̃2
i

σ̃2
i + λ2

(
ũT

i ỹ

σ̃i
σWi

)2

(31)
The derivative of each term in eq.(31) with respect to λ2 is
negative. Thus cT

λ Wcλ decreases as λ2 increases and cT
λ1

Wcλ1 >

cT
λ2

Wcλ2 . Consequently, F (cλ1) =
(
µ +

√
cT
λ1

Wcλ1

)2

>(
µ +

√
cT
λ2

Wcλ2

)2

= F (cλ2). From this we conclude that

M(cλ1 , α) = M(cλ2 , α) has a positive for positive α.

5. EXAMPLE

We demonstrate the robustness-performance trade-off for a
linear regression problem based on neuronal data. Neural
spike trains can be modeled as doubly stochastic Poisson pro-
cesses [4, 7], where the underlying rate is a stochastic process
that depends on behaviorally relevant signals. A major inter-
est is the ability to “read the neural code”, i.e., to reconstruct
the behavioral signals that are encoded in the neural activity
from neural activity of an ensemble of neurons. The specific
application considered here is the reconstruction of the ve-
locity of movement from the neural activity recorded from a
large ensemble of neurons (183 in the present example) and is
based on the experiments reported in [2, 6]. Fig. 1 depicts the
robustness curves of different regularized solution for λ = 0
to λ = 200. All the robustness curves cross each other and in
particular they cross the robustness curve of the least squares
solution. Thus, increasing robustness to uncertainties can be
achieved by selecting regularized solutions with increasing
levels of the regularization parameter, at the expense of de-
creasing fidelity to the data. At any satisficing performance
level, specified by a MSE higher than the optimum, the reg-
ularization parameter providing the highest robustness can be
selected.
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