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ABSTRACT

A complex random vector is called improper if it is correlated
with its complex conjugate. In this paper, we present a gener-
alized likelihood ratio test (GLRT) for impropriety. This test
is compelling because it displays the right invariances: The
proposed GLR is invariant to linear transformations on the
data, including rotation and scaling, just as propriety is pre-
served by linear transformations. Because canonical correla-
tions make up a complete, or maximal, set of invariants for
the Hermitian and complementary covariance matrices under
linear transformations, the GLR can be shown to be a function
of the squared canonical correlations between the data and its
complex conjugate. This validates our intuition that the in-
ternal coordinate system should not matter for this hypothesis
test.

1. INTRODUCTION

In recent years, there has been an increased awareness that
the second-order statistics of a complex random vector s are
characterized by two covariance matrices (see, e.g., [1] – [5]):
the Hermitian, positive semidefinite covariance matrix ΓΓΓ =
E

{
(s−Es)(s−Es)H

}
and the complex symmetric, comple-

mentary covariancematrix C =E
{
(s−Es)(s−Es)T

}
. In the

past, it was often assumed that the complementary covariance
vanishes, C = 0, a case that is referred to as proper, circu-
lar, or circularly symmetric. Recently, it has been shown that
there are a number of situations in communications where
this is not the case, and taking the information contained in
the complementary covariance into account can lead to sig-
nificant performance gains (e.g., [3, 4]). In order to access
the information in the complementary covariance C if s is
improper, widely linear (WL) or conjugate-linear transforma-
tions are required. WL transformations depend linearly on
the complex vector s and its complex conjugate s∗ [6], which
may be expressed as As+Bs∗.

In many applications, the complementary covariance ma-
trix must be estimated from the data available. Such an es-

timate Ĉ will in general be nonzero even if the source is in
fact proper. The question that arises is how we can clas-
sify a problem as proper or improper. To answer this ques-
tion, we propose a hypothesis test for impropriety based on a
generalized likelihood ratio (GLR). In a GLR, the unknown
parameters (ΓΓΓ and C in our case) are replaced by maximum
likelihood estimates [7]. This procedure is not generally opti-
mal in the sense of Neyman-Pearson, but it is widely used in
practice because of its reliable performance. When the GLR
displays compelling invariances, then it is valued even if it
cannot be shown to be uniformly most powerful. We demon-
strate that the GLR for our problem indeed satisfies an intu-
itively appealing invariance to linear transformations on the
data, which include rotation and scaling.

2. THE GLRT DECISION RULE

Let s ∈ CI N be a complex Gaussian random vector, and let
σσσ = [sT ,sH ]T denote an augmented vector formed by stacking
s on top of its conjugate s∗. In general, the probability density
function (pdf) of potentially improper s is given by [1, 2]

p(σσσ) = π−N(detR)−1/2 exp

{
−

1
2
(σσσ−µµµ)HR−1(σσσ−µµµ)

}
.

In this equation, µµµ = Eσσσ is the augmented mean vector, and

R = E(σσσ−µµµ)(σσσ−µµµ)H =

[
ΓΓΓ C
C∗ ΓΓΓ∗

]
∈ CI 2N×2N

is the augmented covariance matrix of s [5]. It contains the
Hermitian covariance matrix

ΓΓΓ = E
{
(s−Es)(s−Es)H}

and the complementary covariance matrix

C = E
{
(s−Es)(s−Es)T}

.

If C = 0, then ΓΓΓ completely characterizes the second order
properties of s, and s is called proper. Proper random vec-
tors are sometimes also referred to as circularly symmetric

III ­ 7961­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



or circular, which stems from the fact that the second order
statistics of a proper random vector are invariant to circular
rotation: If s is proper, then s and e jαs have the same second
order statistics for all real α.

Now consider M independent and identically distributed
(i.i.d.) random samples S = [s1,s2, ...,sM ] taken from the Gaus-
sian distribution with augmented mean µµµ and augmented co-
variance R. Let ΣΣΣ = [σσσ1,σσσ2, ...,σσσM] denote the augmented
sample matrix, where σσσm = [sT

m,sH
m ]T is the augmented sam-

ple vector formed by stacking sm on top of its conjugate s∗m.
Then, the joint pdf of these samples is given by

p(ΣΣΣ) = π−MN(detR)−M/2×

× exp

{
−

1
2

M

∑
m=1

(σσσm −µµµ)HR−1(σσσm −µµµ)

}

= π−MN(detR)−M/2 exp

{
−

M
2

tr(R−1R̂)

}
.

In this equation, tr denotes the trace of a matrix and R̂ is the
sample augmented covariance matrix

R̂ =
1
M

M

∑
m=1

(σσσm − µ̂µµ)(σσσm − µ̂µµ)H =

[
Γ̂ΓΓ Ĉ
Ĉ∗ Γ̂ΓΓ

∗

]
.

This matrix contains the sample Hermitian covariance matrix
Γ̂ΓΓ and the sample complementary covariance matrix Ĉ. Its
definition uses the sample augmented mean vector

µ̂µµ =
1
M

M

∑
m=1

σσσm.

Our aim is to develop a hypothesis test of

H0 : C = 0, s is proper

H1 : C �= 0, s is improper.

We propose a generalized likelihood ratio test (GLRT). Even
though a GLRT is not optimal in the sense of Neyman-Pearson,
it is simple to implement and generally provides good perfor-
mance in practice [7]. The GLRT statistic is

λ =

max
R

C=0

p(ΣΣΣ)

max
R

p(ΣΣΣ)
. (1)

This is the ratio of likelihood with R constrained to have
zero off-diagonal blocks, C = 0, to likelihood with R un-
constrained. We are thus testing whether or not R is block-
diagonal.

It is well-known that the unconstrained maximum likeli-
hood (ML) estimate of R is the sample covariance matrix R̂,
and the ML estimate of R under the constraint C = 0 is

R̂0 =

[
Γ̂ΓΓ 0
0 Γ̂ΓΓ

∗

]
.

Hence, the GLR (1) can be expressed as

� = λ
2
M = det

(
R̂−1

0 R̂
)(

exp

{
−

M
2

tr
(
R̂−1

0 R̂− I
)}) 2

M

= det

[
I Γ̂ΓΓ

−1
Ĉ

Γ̂ΓΓ
−∗

Ĉ∗ I

]
= det(I− Γ̂ΓΓ

−1
ĈΓ̂ΓΓ

−∗
Ĉ∗). (2)

We may also write it as

� =
detR̂

(det Γ̂ΓΓ)2
(3)

=
det(Γ̂ΓΓ− ĈΓ̂ΓΓ

−∗
Ĉ∗)

det Γ̂ΓΓ
. (4)

Equations (2) through (4) are equivalent formulations of this
GLR. The actual implementation of this test will rely on (3)

since it does not require computation of Γ̂ΓΓ
−1

. However, the
expression (4) provides more insight: It expresses the GLR as
the ratio of the determinant of the Schur complement of R̂ and
the determinant of the Hermitian sample covariance matrix Γ̂ΓΓ.
In the next section, we will endow this observation with some
intuitively appealing interpretation.

3. INTERPRETATION

How compelling is the GLRT decision rule derived above?
Propriety is preserved under linear transformation, which in-
cludes rotation and scaling. Hence, the decision rule should
be invariant to linear transformations applied to the sample
matrix S. That is, for nonsingular T ∈ CI N×N and

S̃ = TS ⇐⇒ Σ̃ΣΣ =

[
T 0
0 T∗

]
ΣΣΣ,

the GLRs for S and S̃ should be identical. This means that
the GLR must be a function of a complete, or maximal, set
of invariants for the sample augmented covariance matrix R̂
under the transformation group

T =

{
TL =

[
T 0
0 T∗

]
,detT �= 0

}
with group action

R̂ −→ TLR̂TH
L .

Such a complete set of invariants is given by the canonical
correlations [8, 9] computed from R̂. We emphasize, how-
ever, the important constraint that in TL, the southeast block,
T∗, must be the conjugate of the northwest block, T.

We will first assume that we know the augmented covari-
ance matrix R. Let ΓΓΓ = ΓΓΓ1/2ΓΓΓH/2 be the Cholesky factoriza-
tion of ΓΓΓ, which means that ΓΓΓ1/2 is generally not symmetric.
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In order to find the canonical correlations, we determine the
singular value decomposition (SVD) of the coherence matrix
[9]

M = ΓΓΓ−1/2CΓΓΓ−T/2

as
M = FKGH . (5)

Since M is complex symmetric, M = MT , but not Hermitian
symmetric, M �= MH , we have F = G∗, and the SVD (5) be-
comes Takagi’s factorization [10],

M = FKFT .

The matrix F is unitary and K = diag(k1,k2, ...,kN) contains
the canonical correlations kn on its diagonal. These satisfy
0 ≤ kn ≤ 1. The squared canonical correlations k2

n are the
eigenvalues of the squared coherence matrix

MMH = ΓΓΓ−1/2CΓΓΓ−∗C∗ΓΓΓ−H/2,

or equivalently, of the matrix ΓΓΓ−1CΓΓΓ−∗C∗ because

KKH = FHΓΓΓ−1/2CΓΓΓ−∗C∗ΓΓΓ−H/2F.

These eigenvalues are invariant to the choice of a square root
for ΓΓΓ. It is also easy to show that the canonical correlations
{kn} are invariant under the transformation group T .

In order to compute the GLR (2), we use an estimate of the
canonical correlation matrix, K̂, from the sample Hermitian
covariance matrix Γ̂ΓΓ and sample complementary covariance
matrix Ĉ. We then have

� = det(I− K̂K̂H)

=
N

∏
n=1

(1− k̂2
n). (6)

Thus, the GLR is indeed a function of the estimated (squared)
canonical correlations only. Even though we would use (3)
and not actually compute canonical correlations in a practical
application, this result provides an interesting interpretation.

The canonical correlations {kn} measure the correlations
between the white, unit-norm canonical coordinates

s̃ = FHΓΓΓ−1/2s

and their conjugates

s̃∗ = FT ΓΓΓ−∗/2s∗.

More precisely, the canonical correlations {kn} are the cosines
of the canonical angles between the linear subspaces spanned
by s̃ and the complex conjugate s̃∗ [9]. If these angles are
small, then s∗ may be linearly estimated from s, indicating
that s is improper (obviously, s∗ can be perfectly estimated
from s if widely linear operations are allowed). If these an-
gles are large, then s∗ may not be linearly estimated from s,
indicating a proper s. These angles are invariant to nonsingu-
lar linear transformations T, thus validating our intuition that
the internal coordinate system does not matter.
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Fig. 1. Receiver operator characteristic (ROC) curves for the
GLRT detector in the example. From northwest to southeast,
these curves correspond to a phase tracking error variance of
0.7, 0.9, 1.1, and 1.3. The SNR for all curves is 0 dB.

4. AN EXAMPLE

In the scalar case N = 1, the GLRT decision rule becomes
especially simple,

� = 1−
|ĉ|2

γ̂2 , (7)

with sample covariance γ̂ and sample complementary covari-
ance ĉ. As a simple example, we consider the transmission
of equiprobable binary data bm ∈ {±1} over an AWGN chan-
nel that also rotates the transmitted bits by φm. The received
statistic is

rm = bme jφm +nm,

where nm are samples of white Gaussian noise and φm are
samples of the channel phase. We are interested in classify-
ing this channel as either noncoherent or (at least partially)
coherent. That is: Is this channel rotationally invariant or can
some phase information be extracted from the received statis-
tic rm? Even though rm is not Gaussian, the GLR (7) is well
suited for this hypothesis test.

We evaluate the performance of the GLRT detector by
Monte Carlo simulations. Under hypothesis 0, we assume
that the phase samples φm are i.i.d. and uniformly distributed,
and under hypothesis 1, we assume that the phase samples
are i.i.d. and drawn from a Gaussian distribution. This means
that under H0, no useful phase information can be extracted,
whereas under H1, a phase estimate is available, albeit with a
tracking error.

Figure 1 plots the probability of detection, PD, vs. the
probability of a false alarm, PFA, for a signal-to-noise ratio of
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Fig. 2. ROC curves for the GLRT detector in the example.
From northwest to southeast, these curves correspond to a
SNR of 6, 3, 0, and −3 dB. The phase tracking error vari-
ance for all curves is 1.

0 dB and varying variance for the phase tracking error. Fig-
ure 2 plots this curve for varying signal-to-ratios and a phase
tracking error with variance 1. In all cases, the number of
samples was taken as M = 1000.

Not surprisingly, we can see from these figures that the
test performs very well for larger SNR or for smaller phase
tracking error.

5. CONCLUSIONS

We have presented a GLR hypothesis test for impropriety.
The reason this GLRT is compelling is that it has the right
invariance. It is invariant under linear, but not widely lin-
ear, transformation just as propriety is preserved under lin-
ear transformation, but not widely linear, transformation. In
fact, we have shown that the GLR is a function of the squared
canonical correlations between the data and its complex con-
jugate only. These canonical correlations are a set of maximal
invariants for this problem. It remains to be shown whether
the proposed GLRT is also a uniformly most powerful test.
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