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ABSTRACT

Some clustering algorithms require assumptions (such as
number and shape of classes), which limit their performances
or provide wrong results. On the contrary, methods based
on the estimation of the probability density function (pdf )
do not make any assumption neither on the classes shape
nor on their number. Two methods based on the pdf, are ex-
plored and applied to the segmentation of a multi-spectral
image of a cereal grain. The first one is inspired from the
estimation of the pdf Parzen-Rosenblatt and the second one
estimates the support of the pdf through the support vector
theory.

1. INTRODUCTION.

The knowledge of biological structures in plants is a very
important task to valorize agronomical ressources. Our work
is in keeping with the identification and the repartition of
various tissues in cereals. Actually cereal grains are con-
stituted by tissues which are superimposed. The central
part contains starch and the external layers serve as protec-
tion. Those contain pure natural fluorescent components :
cutin, ferulic acid, lignin whose signatures recover partially.
Confocal laser microspectrofluorometry enables to visual-
ize autofluorescence of tissues. Many laser excitations as-
sociated with a set of various filters in reception allow to get
pseudo multi-spectral images.

In a former work, techniques of independent component
analysis have been applied to isolate pure chemical com-
pounds and their proportion map from a multispectral image
of a barley grain [1], [2]. In [3], the relation between Blind
Source Separation methods and classification has been ex-
amined through an application in teledetection for which a
ground analysis was given. Now, in the framework of the
study of the barley grain, we compare two methods of pixel
classification which do not make any assumption neither on
the shape of classes nor on their number.

Each tissue enclosed in the studied vegetal has a homo-

geneous chemical composition whose corresponding pixels
are gathered in the same class, each being characterized by
its concentration map. There are several ways to go from
the set of elementary maps to the unique map. A first group
of methods is interactive and called interactive correlation
partitioning. It consists in selecting the different classes of
pixels interactively, within the two- or three-dimensional
scatterplot, and back-mapping the selected areas into the
real image space. The second group of methods is auto-
matic and sometimes is called automatic correlation parti-
tioning. It consists in automatically grouping similar pix-
els (that possess similar elementary composition) into one
class, the number of classes being a priori unknown. This
process is known as clustering in artificial intelligence and
data analysis communities.

This paper is organised as follows: in the next two sec-
tions we will present a briefly overview of the Parzen-water-
sheds and Support Vector Classification algorithms. Both
methods applied to artificial data sets and to a multispectral
image of a cereal will be presented in section 4. Finally we
will discuss on the results and draw some perspectives of
research.

2. THE PARZEN-WATERSHEDS ALGORITHM

Parzen-watershed clustering algorithm is an unsupervised
data classification technique which does not make any as-
sumption concerning the shape nor the number of classes
[4], [5], [6]. The first step of this approach consists in es-
timating the pdf p(xi) of the whole data set in the feature
space. This can be done according to the Parzen method [7]
for which the point distribution (one object corresponds to
one point xi in feature space) is transformed into a quasi-
continuous distribution p(xi) through a convolution by a
smoothing kernel:

p(xi) = λ
N∑

k=0

K(
xi − yk

h
) (1)
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where K is a smoothing kernel of size h and λ is a nor-
malizing factor. The estimated pdf p(xi) is generally char-
acterized by several modes, or local maxima, separated by
valleys or local minima. Each mode is considered to match
with a class of objects.

Thus, next step consists in estimating the position of
the boundaries between the different classes in the feature
space. Although this task is trivial for a one dimensional
feature space, it is much complicated for an n dimensional
feature space, (n > 1). To split the feature space, the water-
shed function issued from mathematical morphology [8] or
the SKIZ (SKeleton by Influence Zones) method [9] can be
used.

We retained the SKeleton by Influence Zones procedure.
This procedure consists in detecting firstly the connected
components using an iterative thresholding of the estimated
pdf. The connected components are defined as one-piece
subsets partitioning the whole data space. For a two dimen-
sional data space, we use the eight-connected neighbours in
order to define these subsets. These connected components
will be used as seeds in order to determinate the influence
zones. Each point in the feature space will belong to the
influence zone of that connected component which is the
closest to the current point. The number of influence zones
will be equal to the number of the connected components.

Then, last step consists in returning to the real image
space. This can be done easily because one knows where
any pixel k was mapped in the feature space, when the scat-
terplot was built. Thus, for any pixel of the image space,
it only needs to carry back the label c found in the fea-
ture space, to the real space. As for any clustering method,
the question of selecting a number of classes is relevant.
Within our framework, the number of classes is the number
of modes of the estimated pdf. The number of modes itself
is related to the width of the smoothing kernel h. Estimat-
ing the number of classes consists in looking at the number
of modes M as a function of the parameter h. The decreas-
ing curve M = f(h) displays some plateaus, which gives
stable solutions for the number of classes.

3. THE SUPPORT VECTOR CLUSTERING
ALGORITHM, SVC

In this unsupervised classification algorithm, data points are
mapped from the data space to a high dimensional feature
space using a Gaussian kernel. In this feature space, we look
for the hyperplane which separates the data set from the ori-
gin with the largest margin. This hyperplane when mapped
back to the data space, forms a set of contours which en-
closes the data points. These contours are interpreted as
cluster boundaries. Points enclosed by each separate con-
tour are associated in the same cluster. As the width param-
eter of the Gaussian kernel decreases, the number of dis-

connected contours in the data space increases, leading to
an increasing number of clusters [10]. SVC can deal with
outliers by employing a soft constant margin that allows the
hyperplane in feature space not to separate all points. For
large values of this parameter, one can deal with overlap-
ping clusters [10]. To separate the data from the origin, one
solves the following quadratic equation [11]:

minwεF,ξεRlρεR

(
1
2
‖ w ‖2 +

1
νl

∑
i

ξi − ρ

)
(2)

Subject to:

(w.Φ(xi)) ≥ ρ − ξi, ξi ≥ 0 (3)

Since nonzero slack variables ξi, are penalized in the ob-
jective function, we can expect that if w and ρ solve this
problem, then the decision function :

f(x) = sgn (((w.Φ(xi)) − ρ)) (4)

will be positive for the most samples xi contained in the data
set, while ‖ w ‖ will be still small. The actual trade-off be-
tween these two goals is controlled by ν . Using multipliers
αi, βi ≥ 0 we introduce a Lagrangian:

L(w, ξ, ρ, α, β) = 1
2 ‖ w ‖2 + 1

νl

∑
i ξi − ρ

−∑
i αi((w.Φ(xi)) − ρ + ξi)) −

∑
i βiξi

(5)

and set the derivatives with respect to the primal variables
w, ξ, ρ, equals to zero, yielding:

w =
X

i

αiΦ(xi) (6)

αi =
1

νl
− βi ≤ 1

νl
,

X

i

αi = 1 (7)

All samples xi for which αi > 0 are called support vec-
tors. So the decision function f is transformed into a kernel
expansion.

f(x) = sgn

(∑
i

αik(xi, x) − ρ

)
(8)

Substituting equations 6 and 7 into 5 we obtain the dual
problem:

min

⎛
⎝1

2

∑
ij

αiαjk(xi, xj)

⎞
⎠ (9)

Subjected to:

0 ≤ αi ≤ 1
νl

,
∑

i

αi = 1 (10)

We can recover ρ by exploiting that for any αi > 0 the
corresponding pattern xi satisfies:

ρ = (w.Φ(xi)) = Σiαik(xj , xi) (11)
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Although this procedure can recover exactly the boundaries
of the classes, in our application we used the same SKIZ
procedure [9]in order to separate the data space. The bi-
nary function corresponds to the connected components in
the data space which will be used as seeds in the SKIZ pro-
cedure.

4. APPLICATION

Both procedures described in section 2 and 3, were tested
on simulated data and on a real application. Fig.1(a) dis-
plays the scatter plot of the simulated data, while Fig.1(b)
shows its pdf obtained by the Parzen watersheds algorihm
and Fig.1(c) the two resulting classes.

(a) scatter plot (b) pdf (c) classes

Fig. 1. Parzen-watershed on simulatated data.

The SVC method is very robust when tries to separate
classes where there is no overlapping, but otherwise it fails
as it can be seen on Fig.2 even so both parameters of the
method (the kernel size and the outliers’ controller) are care-
fully chosen.

(a) SVM1 (b) SVM2

Fig. 2. SCV results on simulated data.

Now, multispectral image of a cross section of the bar-
ley grain acquired in fluorescence, is segmented according
to the general scheme of Fig.3 to identify the tissues. The
grains were furnished by INRA de Clermont-Ferrand and
the images were recorded by INRA Nantes tanks to M.-F.
Devaux. The data set contains 19 images of 512x512 pix-
els. In order to reduce the computing time, we process a
sample of 80x10 bidimensional data, obtained by a cross
section in the first two principal components. The SKIZ
procedure helped us to split the feature space in order to
obtain a map of classification which was used to assign the
rest of the data. The energy distribution for the four prin-
cipal components is presented in table 1 and the first two

Table 1. Energy distribution for the PC
Principal components Energy distribution

PC 1 77.384
PC 2 16.852
PC 3 2.4909
PC 4 1.3034

principal components (they contain more than 90% of the
energy) used for the clustering are displayed in Fig.4.

Fig. 3. Scheme of the application.

(a) First component (b) Second component

Fig. 4. The two first components.

Depending on the kernel size, Parzen-watershed method
proposes 6, 4 or 3 classes with significant credibility, as
we can see in Fig.5a. The result of the segmentation for
6 classes is presented in Fig.6.
For the SV method, the number of classes depends both on
the kernel size and on the outliers’ controller. So, the num-
ber of classes proposed by this method is 13, 12, 10, 8, and
6, as we can see in Fig.5b. The result of the segmentation
for 8 classes is presented in Fig.7. We must say that for 6
classes, SV method cannot reveal the class corresponding to
the external tissue (cutin).

The results were compared with the theoretical scheme
of the barley grain, and we admitted that a number of six
classes of pixels would be enough to identify the tissues.
A class does not necessarily correspond to a tissue or to
a pure component unless one tissue is constituted only by
one chemical component. The tissues may be identifiable
by their texture, but the pure components may be achieved
by the ICA. As a further research it will be interesting to
analyse the classes obtained after the classification process,
using the ICA in order to identify the pure compounds pre-
sented in each tissue and to compare them to the reference
spectra.
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(a) Parzen-watershed
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(b) SVC

Fig. 5. Most frequent number of classes.

(a) pdf (b) classes (c) areas

Fig. 6. Parzen-watershed results for 6 classes.

5. DISCUSSION

Two clustering methods which make assumptions neither on
the clusters shape, nor on their number are presented. The
Parzen-watershed algorithm (which computes the entire pdf
for a given data set) is compared with a method based on the
Support Vectors theory which computes only the support of
the pdf.

Using artificial data we simulated the limit case of a two
overlapping clusters, a problem which often occurs in data
clustering. In that case, the results show that the Parzen-
watershed algorithm performs better. One explication of
these results can be formulated as follows: estimating the
whole pdf for a data set reveals more details about the data
in study than estimating only the support of the pdf. These
details (such as peaks in the estimated pdf ) can lead to class
separation. The method based on the SV theory, cannot find
such details without loosing reliability.

(a) PDFpdf (b) classes (c) areas

Fig. 7. SCV results for 8 classes.

One may expect that the results of both clustering proce-
dures should be the same, as the two methods are somehow
related; but is not the case because they perform different
when deal with overlapping clusters. Both procedures find 6
classes with significant credibility but in this case, only the
Parzen-Watershed method reveals the class corresponding
to the external tissue. We explain this situation by the fact
that this class is overlapping with the class corresponding to
the tissue close to the external layer of the barley grain. In
this case, as we saw on the artificial data, SV cannot sep-
arate them. The external tissue can be recovered by this
method too, but the cost is the increase of the number of
classes.

Support Vectors algorithms were successfully used as
techniques for supervised learning with very good results.
There have been a few attempts to transfer the idea of using
kernels to compute inner products in feature space to the
domain of unsupervised learning. Kernel learning theory
offer further directions: to use or to develop different kernel
functions which are suitable for the data set in study.
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