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ABSTRACT

A formulation for multilabel and performance constraints clas-

sification problems is presented within the framework of sta-

tistical decision theory. The definition of the problem takes

into account three concerns. The first is the cost function

which defines the criterion to minimize ; the second is the

decision options which are defined by the admissible assign-

ment classes or subsets of classes and the third one is the con-

straints of performance. Assuming that the conditional proba-

bility density functions are known, the classification rule that

is solution of the stated problem is expounded. Two examples

are provided to illustrate the formulation and the decision rule

obtained.

1. INTRODUCTION

Theoretical studies of binary classification have yielded dif-

ferent optimal rules, according to particular criteria (Bayes

rule, Neyman-Pearson test, minimax test) [1]. In some sys-

tems, the performances obtained are unsatisfactory because

the error rate is excessive. A reject option has been intro-

duced as a mean to reduce the error rate through a rejection

mechanism [2, 3, 4]. It consists in withholding a decision

and directing the rejected pattern to an exceptional handling,

using additional information. However the performance of

the rule obtained can be unsatisfactory with respect to criteria

other than the error rate. In general, the desired performances

can be defined by several constraints, which can combine dif-

ferent total or conditional probabilities and which can be ex-

pressed using inequalities or order relationships. The classi-

fication rules for the case of two constraints stating that each

of the two conditional errors is bounded and the case of one

constraint stating that the ratio of the error probability to the

non-rejection probability is bounded are studied in [5, 6].

Problems of classification with reject option in the case of

more than two classes are more complex. The simplest de-

cision rule with reject option was proposed by Chow [2]. It

consists in rejecting a sample if its highest posterior probabil-

ity is lower than some threshold. The optimality is based on a

tradeoff between the error rate and the rejection rate. A more

complex scheme called class-selective rejection was proposed

by Ha [7]. The pattern is not rejected from all classes but only

from those that are most unlikely to issue the pattern. The op-

timality is defined as the best tradeoff between the error rate

and the average number of selected classes. It consists in as-

signing the pattern to all classes whose posterior probability is

greater than a pre-specified threshold. Another rule consist-

ing in minimizing the maximum distance between selected

classes for a given average number of classes has been pro-

posed in [8]. These rules are interesting since providing a list

of classes, instead of making a simple rejection, can make the

subsequent processing easier. However the proposed rules do

not take into account performance constraints.

The aim of this paper is to expound the formulation of

multilabel classification with constraints and to derive the clas-

sification rule for problems assuming that the conditional den-

sity functions and the a priori probabilities are known or cor-

rectly estimated.

The formulation considers the following concerns :

• decision options : they correspond to the assignment

classes or subsets of classes that are deemed as admis-

sible for the problem,

• constraints : they correspond to the performance con-

straints to be satisfied,

• cost function : it corresponds to the function to mini-

mize.

These concerns are described in section 2. Section 3 considers

how to elaborate the classification rule of the stated problem.

In section 4, two simulated problems are provided to illustrate

the formulation and the decision rule obtained. The paper is

concluded in section 5.

2. PROBLEM FORMULATION

2.1. Decision options

Let us suppose that a pattern x belongs to a class j noted Cj ,

with j = 1..N where N is the number of classes. The clas-

sification rule consists in assigning the pattern x to a label set
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ωi which is a class or a subset of classes. Assigning x to a

subset of classes means that the element is considered as be-

longing to one of the classes in the subset without distinction

of class. The decision options set Ω is defined by the label

sets ωi :

Ω = {ω1, ω2, . . . ωI} (1)

where I is the number of sets, whose maximum value is 2N −
1. Each ωi is a subset of the N classes, containing at least one

class, and specified by the numbers of the classes, for example

ω4 = {1; 4; 5}.

We define Zi as the set of patterns x that are assigned to

ωi :
Zi = {x ∈ R

n|x is assigned to ωi} . (2)

Since each x has to be assigned to a unique ωi, the sets Zi

build up a partition of R
n, that we call Z.

The probability of deciding that an element of the class j
belongs to the set ωi is P (Di/Cj) :

P (Di/Cj) =
∫

Zi

P (x/Cj)dx (3)

where P (x/Cj) are the conditional density functions.

2.2. Performance constraints

Any performance constraint C(k) is defined by its expression

e(k) and its threshold γ(k) :

e(k) ≤ γ(k) with e(k) =
I∑

i=1

N∑
j=1

α
(k)
i,j PjP (Di/Cj) (4)

where α
(k)
i,j ∈ R and Pj = P (Cj) are the a priori probabili-

ties.

A large diversity of constraints can be defined using this

formulation, and in particular the following ones :

• a constraint on the error associated with an assignment

set, for example : P (D1/C2) + P (D1/C3) ≤ γ,

• a constraint on the error associated with a class, for ex-

ample : P1P (D2/C1) + P1P (D3/C1) ≤ γ,

• a constraint on good decision associated with a class,

for example : P (D1/C1) ≥ γ,

• a constraint expressed by a ratio, for example :

P (D1/C1)/ [P (D1/C1) + P (D2/C1)] ≥ γ,

• a constraint described by a order relation, for example :

P (D2/C1) ≤ P (D3/C1).

2.3. Cost function

The cost function allows the inclusion of simple problem for-

mulations. It is given by :

c =
I∑

i=1

N∑
j=1

cijPjP (Di/Cj). (5)

where cij is the cost of deciding that an element x belongs to

the set ωi when it belongs to the class j.

This cost function is general and includes usual functions,

in particular the ones described below.

First, let us consider the case where Ω is composed of

I = N sets ωi = {i}. Taking cij = 1 for i �= j and cij = 0
for i = j, c is the expression of the total error probability.

Second, let us consider the case of two classes where Ω is

composed of sets ω1 = {1}, ω2 = {2} and a set ω3 = {1; 2}
that represents a reject option. The case of the following two

constraints problem has been developed in [5, 6] :

P (D1/C2) ≤ e12 and P (D2/C1) ≤ e21 (6)

with e12 and e21 ∈ [0, 1]. If these constraints can be satis-

fied without rejection, then the cost function to minimize is

the error probability PE . When the constraints can not be sat-

isfied using only the sets {1} and {2}, then rejection has to

be used and the function to minimize is the rejection proba-

bility PR =
∑2

j=1 PjP (D3/Cj). Though it seems that two

optimization problems arise, it can be shown that they can be

expressed by the shared cost function c = PE + PR which

corresponds to (5) with c31 = 1, c32 = 1, c12 = 1, c21 = 1,

c11 = 0 and c22 = 0.

Finally, let us consider the cost function (5) with cij =
cmδij + cn|ωi| where δij is equal to 1 if j is in the set ωi and

0 otherwise ; |ωi| is the cardinality of the set ωi ; cm and cn

are constant positive values. Then the obtained cost function

is the same as the one in [7].

The choice strategy for the cost values is beyond the scope

of this paper, however, some remarks can be made. Note that

the values of cij are relative since the aim is to minimize c, we

suggest defining the values in the interval [0; 1]. When the set

ωi contains only one class, cij will be generally equal to 0 for

j equal to the class in ωi and 1 otherwise. When ωi contains

several classes, and class j /∈ ωi, cij defines an error cost then

this cost will be generally equal to 1 ; when class j ∈ ωi, cij

defines an indistinctness cost then it will be generally growing

with the set size.

3. CLASSIFICATION RULE

To derive the classification rule, it is necessary to find the par-

tition Z∗ so that the cost c is minimum and the constraints

given by (4) satisfied. Then the problem to be solved is the

following one :

min
Z

c subject to e(k) ≤ γ(k) ∀k = 1..K (7)

c and e(k) are functions of the partition Z through P (Di/Cj).
A sufficient condition for Z∗ to be solution of the problem (7)

is that (Z∗, µ∗) is a saddle point of the Lagrangian associated

to the problem, given by :

L(Z, µ) = c +
K∑

k=1

µk

(
e(k) − γ(k)

)
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in which µ = [µ1, µ2 . . . µK ] and µi ≥ 0, i = 1 . . .K are the

Lagrange multipliers associated to each of the constraints. To

determine the saddle point (Z∗, µ∗) it is possible to solve the

dual problem given by :

max
µ∈RK+

{
min

Z
L(Z, µ)

}
. (8)

Using (4) and (5), we can rewrite the Lagrangian L(Z, µ) as :

L(Z, µ) =
I∑

i=1

N∑
j=1

cijPjP (Di/Cj)

+
K∑

k=1

⎛
⎝µk

I∑
i=1

N∑
j=1

α
(k)
ij PjP (Di/Cj) − µkγ(k)

⎞
⎠

which is equal to :

L(Z, µ) =
I∑

i=1

∫
Zi

λi(x, µ)dx −
K∑

k=1

µkγ(k), (9)

where λi(x, µ) is given by :

λi(x, µ) =
N∑

j=1

PjP (x/Cj)

(
cij +

K∑
k=1

µkα
(k)
ij

)
. (10)

For a given µ the minimum value of L(Z, µ) is obtained by

choosing the Zi so that the integrated expression is minimum.

It follows that Zi, for i = 1..I , is given by :

Zi = {x|λi(x, µ) < λl(x, µ), l = 1..I, l �= i} (11)

The solution of the dual problem (8) is given by :

µ∗ = arg max
µ∈RK+

w(µ) (12)

with w(µ) = min
Z

I∑
i=1

∫
Zi

λi(x, µ)dx −
K∑

k=1

µkγ(k) (13)

in which the Zi are defined by (11). Finally the optimal clas-

sification rule is defined by the partition Z∗ so that the Z∗
i are

given by (11) with µ = µ∗.

Since the dual function w is a concave function of µ, this

function has an extremum. In order to determine the value µ∗,

usual optimization algorithms can be used. It may occur that

the problem has no solution, meaning that the constraints can

not be simultaneously satisfied . In these cases, the extremum

of the function w is obtained for infinite values of µ. Thus, if

no maximum is found before reaching large values of µ, the

problem has no solution.

From equation (10), it can be noticed that the classifica-

tion rule would be the same for the problem without con-

straints and with the costs c′ij defined by :

c′ij = cij +
K∑

k=1

µ∗
kα

(k)
ij . (14)
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Fig. 1. Density probability functions and classification rule

for the problem with one constraint

4. SIMULATION RESULTS

This section presents the results for a simulated problem. Each

pattern x ∈ R
2 belongs to one of three classes which are nor-

mal distributions. The means and covariance matrix are given

by : m1 = (2.5; 1.2), Σ1 = I,m2 = (−2.5; 1.2), Σ2 = I,
m3 = (0; 0), Σ1 = 2.2I where I is the identity matrix. The

density probability functions are represented on figure 1. Two

classification rules corresponding to two different problems

have been determined.

The first rule was determined according to the following

components :

• 4 label sets : ω1 = {1}, ω2 = {2}, ω3 = {3}, ω4 =
{1; 2; 3}

• 1 constraint : PE < 0.05 with

PE = P2P (D1/C2) + P3P (D1/C3) + P1P (D2/C1)
+ P3P (D2/C3) + P1P (D3/C1) + P2P (D3/C2)

• cost function : c = PE + PR with

PR = P1P (D4/C1) + P2P (D4/C2) + P3P (D4/C3).

The partition associated with the obtained classification rule

is represented in figure 1. It was obtained for µ∗ = 3.66. This

rule is the same as the one obtained without constraints and

with the cost function :

c = tPE + PR

for t = 1 + µ∗. This cost function is the usual one when

the rejection classification rule is determined using the trade-

off between the error rate and the rejection rate. The usual

way consists in testing different values for µ and choosing

the value which gives the expected error rate. The proposed

method allows us to quickly obtain the correct value of µ us-

ing an optimization algorithm.

The second classification rule was designed according to

the following components :
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Fig. 2. Density probability functions and classification rule

for the problem with six constraints

• 7 label sets : ω1 = {1}, ω2 = {2}, ω3 = {3}, ω4 =
{1; 2}, ω5 = {1; 3}, ω6 = {2; 3}, ω7 = {1; 2; 3},

• 6 constraints :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P2P (D1/C2) + P3P (D1/C3) ≤ 0.01
P1P (D2/C1) + P3P (D2/C3) ≤ 0.01
P1P (D3/C1) + P2P (D3/C2) ≤ 0.01
P3P (D4/C3) ≤ 0.008
P2P (D5/C2) ≤ 0.004
P1P (D6/C1) ≤ 0.004

(15)

• cost function :

c = P2P (D1/C2) + P3P (D1/C3) + P1P (D2/C1)
+P3P (D2/C3) + P1P (D3/C1) + P2P (D3/C2)

+0.5 (P1P (D4/C1) + P2P (D4/C2)) + P3P (D4/C3)
+0.5 (P1P (D5/C1) + P3P (D5/C3)) + P2P (D5/C2)
+0.5 (P2P (D6/C2) + P3P (D6/C3)) + P1P (D6/C1)

+P1P (D7/C1) + P2P (D7/C2) + P3P (D7/C3).
For the sets ω1, ω2 and ω3 containing one class, the

cost cij is equal to 1 if i �= j (incorrect class) and 0

otherwise (correct class). For the sets ω4, ω5 and ω6

containing two classes, the cost cij is equal to 1 if class

j /∈ ωi (incorrect class) and 0.5 otherwise (correct clas-

sification among classes subsets but without distinction

of class). For the set ω7 containing the three classes,

the cost cij is equal to 1 because it corresponds to total

rejection.

The partition associated with the obtained classification rule

is represented in figure 2. It was obtained for µ∗ = [4.04;
4.04; 2.04; 4.39; 3.92; 3.92].

5. CONCLUSION

A formulation is proposed for multilabel and performance

constraints classification problems. It considers three con-

cerns defining the problem : the label sets, the performance

constraints and the cost function. This formulation embodies

the usual framework of statistical decision theory and com-

mon rejection rules.

The classification rule for the stated problem, assuming

that the probability density functions are known, is found. It

is obtained using standard optimization algorithms. The ap-

proach also enables us to decide about the existence of so-

lutions for a given problem. It is shown that any problem

defined by a cost function and performance constraints can

be transformed into an equivalent problem, defined by an-

other cost function but without constraints, yet the classifi-

cation rule remains the same. Whereas different approaches

for determining a rejection rule with a constraint on the error

probability consist in testing several costs so that the given

performance is achieved, the proposed approach is more suit-

able since the performance is directly achieved by solving an

optimization problem.

Future work will focus on designing classification rules

for such problems where the process is learned using a train-

ing sample set.
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