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ABSTRACT 

Recently, Chen et al. (CVPR 2005) proposed a new 

manifold embedding method, Local Discriminant 

Embedding (LDE), which utilizes the neighbor and class 

relations of data to construct the embedding for 

classification. While having powerful classification ability, 

LDE suffers from small size sample problem, which leads to 

unstably numerical computation. To deal with this problem, 

we propose to a method of regularized LDE (RLDE)  by 

imposing additional regularizing constraints on LDE. 

Experimental results show the effectiveness of the proposed 

method. 

1. INTRODUCTION 

Subspace-based face recognition method aims to find a low 

dimensional subspace of face appearance embedded in a 

high dimensional image space. The differences between 

different subspace-based methods lie in their different 

motivations and objective (or cost) functions. Eigenface, the 

underlying idea which is the Principal Component Analysis

(PCA) [1], seeks a subspace that best represents the data in 

a least-squares sense. Therefore, the feature extracted by 

PCA is called the most expressive feature [2]. Fishferface, 

the underlying idea of which is the Linear Discriminant 

Analysis (LDA) [3], selects a linear transformation matrix in 

such a way that the ratio of the between-class scatter to 

with-class scatter is maximized. Therefore, the feature 

extracted by LDA is called the most discriminant feature [2]. 

Recently, several manifold learning algorithms were 

developed: locally linear embedding (LLE) [4], Isomap [5], 

Laplacian Eigenmaps [6]. They all utilize local 

neighborhood information to construct a global embedding 

of the manifold. Using Nyström formula, one can extent 

them to be able to map new test points [7]. Another way to 

apply these algorithms to new points is to introduce a linear 

transformation matrix to relate input with output. Locality 

Preserving Projections (LPP) [8] and Neighborhood 

Preserving Projections (NPP) [9] are the results of linear 

generalization of Laplacian Eigenmaps and LLE 

respectively. LPP and NPP can be categorized into subspace 

learning algorithm. Compared with PCA, LPP and NPP 

preserve the local structure instead of the global structure of 

the image space. However, this property does not 

necessarily mean optimal classification. Moreover, they are 

unsupervised learning methods, so the information carried 

by class labels is lost. More recently, Local Disriminant 

Embedding (LDE) [10] and marginal fisher analysis (MFA) 

[11] were proposed to overcome the drawbacks of LPP. 

LDE and MFA were developed by different researchers, but 

the underlying ideas of which are almost the same: the 

neighbor and class relations of data are utilized to construct 

the face space (subspace of the image space). Compared 

with LDE, MFA and LDE do not depend on the assumption 

that the data of each class is Gaussian distributed. 

Despite its advantages, LDE suffers from the small 

sample size (SSS) problem. Small sample size problem 

occurs when there are few training samples compared to 

sample dimension, as often encountered in tasks such as 

face recognition. With this problem, LDE is involved in 

eigen-decomposition with singular matrix, which leads to 

unstably numerical computation. Though one can deal with 

this difficulty by employing PCA to perform dimension 

reduction for the data before conducting LDE, some useful 

information may be lost by discarding minor components 

and maintaining only principal components. This problem 

was addressed in various extensions of LDA, such as direct 

LDA [12] and dual-space LDA [13]. In this paper, we 

provided another way to avoid matrix being singular in LDE. 

In the method (RLDE), generalized eigenvalue problem is 

converted to standard eigenvalue problem without having to 

compute inverse matrix. The method is demonstrated with 

face recognition where several methods are compared. 

Results show that RLDE can not only handle the SSS 

problem, but also enhance the recognition accuracy. 

The reminder of this paper is organized as follows. In 

Section 2, Laplacian Eigenmaps, which is the basis of LDE, 

is described. Then LDE is given in Section 3. The proposed 

method is presented in Section 4. The proposed method is 

evaluated on the AR face database [14] in Section 5. Finally, 

conclusion is drawn in Section 6.  
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2. LAPLACIAN EIGENMAPS 

Because LDE is fundamentally based on Laplacian 

Eigenmaps, we will give a brief description of Laplcacian 

Eigenmaps first.  

Laplacian Eigenmaps is a geometrically motivated 

algorithm for constructing a representation for data sampled 

from a low dimensional manifold embedded in a higher 

dimensional space [6]. Let X=[x1,x2,…,xN] be a data set of 

D-dimensional vectors. Dimension reduction is conducted 

to map these points (vectors) to be new points 

Y=[y1,y2,…,yN] in a d-dimensional space where d<<D.  The 

objective function of Laplacian Eigenmaps is to maximize 
2

,

( ) || ||i j ij

i j

J wY y y                       (1) 

under appropriate constraints. Weight wij are defined as 

follows. If xj is among k nearest neighbors of xi, then 

wij=exp(-||xi-xj||
2/t), otherwise wij =0. 

Weights wij give a heavy penalty if neighboring points 

xi and xj are mapped far apart. Therefore, minimizing J

ensures that if xi and xj are close then yi and yj are close as 

well [8]. 

3. LOCALLY DISCRIMINANT EMBEDDING (LDE) 

Laplacian Eigenmaps is an unsupervised manifold learning 

algorithm, whereas LDE [10] is a supervised subspace 

learning algorithm. Therefore, class label li of xi (i=1,…N)

are used in LDE to determine a linear transformation matrix 

U such that 
T

i iy U x .                                     (2) 

The column vectors of U=[u1 u2 … ud] span a d-

dimensional subspace. The aim of LDE is to, in the low 

subspace, keep neighboring points close if they have the 

same class label, whereas prevent points of other classes 

from entering the neighborhood [10]. Its objective is to 

maximize the function  
2

,
( ) || ||T T

LDE i j iji j
J wU U x U x                                 (3) 

subject to  
2

,
|| || 1T T

i j iji j
wU x U x ,                                 (4) 

where weight wij and ijw are defined as follows. If xj is 

among k nearest neighbors of xi and li lj then 
ijw =exp(-||xi-

xj||
2/t), otherwise ijw =0. If xj is among k nearest neighbors 

of xi and li=lj then wij =exp(-||xi-xj||
2/t), otherwise wij =0. 

Because 
2

,
|| ||T T

i j iji j
wU x U x

,
[( )( ) ]T T T T T

i j i j iji j
tr wU x U x U x U x

,

[( ( )( ) ]T T

i j i j ij

i j

tr wU x x x x U

,
{ [ ( ) ( ) ] }T T

i j ij i ji j
tr tr wU x x x x U

2 [ ( ) ]T Ttr D WU X X U ,

The objective function (3) and the constraint in (4) can be 

reformulated as 

maximizing ( ) 2 [ ( ) ]T T

LDEJ tr D WU U X X U      (5) 

subject to 2 [ ( ) ] 1.T Ttr U X D W X U              (6) 

The optimization can be reduced to the following 

generalized eigenvalue problem: 

( ) ( )T T
X D W X u X D W X u ,               (7) 

where the elements of the matrix W  are ijw , the elements 

of the matrix W are wij. The elements of diagonal matrices 

D and D  are defined as ii ijj
d w and 

ii ijj
d w respectively. 

Defining ( ) T
A X D W X and ( ) T

B X D W X ,

we have 

Au Bu ,                               (8) 

or 
1

B Au u .                               (9) 

The above formulation can be problematic when the 

sample size is small. In this case, B becomes singular and 

the computation of (9) is unstable. One possible solution is 

to employ PCA to perform dimensionality reduction before 

conducting LDE; however, some useful information may be 

lost as a consequence. If considerable principal components 

are discarded, then information is lost not only in the sense 

of reconstruction but also in recognition. Therefore, we 

propose a method called Regularized LDE (RLDE) to solve 

this problem. 

4. REGULARIZED LDE (RLDE) 

Now we discuss Laplacian Eigenmaps and LDE, then 

describe our idea to improve LDE. 

4.1. The basic idea 

Fig. 1 (a) illustrates the local neighborhood relationship of 

the original data. The hollow circles ( 1

1x , 1

2x , 1

3x , and 1

?x )

belong to one class (class #1) and the solid circles ( 2

1x , 2

2x ,

and 2

3
x ) belong to another class (class #2). Suppose the 

distances from 1

?x  to any other points are all equal. The 

points in Fig. 1 (a) are mapped by Laplacian Eigenmaps (or 

LPP), and the corresponding new points 

( 1

1
y , 1

2
y , 1

3
y , 1

?
y , 2

1
y , 2

2
y , and 2

3
y ), are shown in Fig. 1(b). 

Note that, without loss of generalization, we let the 

dimensionality of the new points be equal to that of the 

original points. The local structure of the original data (Fig. 

1(a)) is kept exactly in Fig. 1(b). This is the so-called 

locality-preserving property [6][8]. However, it contributes 

little for pattern classification in this case. Suppose 1

?x  is a 
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probe point, one can find that the distances from its 

corresponding point, 1

?y , to any other points belonging to 

either class #1 or class #2 are equal as they are in Fig. 1(a). 

It is hard to say which class 1

?y  should be classified into. 

Fig 1 (c) shows the result of LDE. We find that the 

distances from 1

?
y  to the points of class #1 ( 1

1
y , 1

2
y , and 1

3
y )

are maintained, whereas the distances to the points of class 

#2 ( 2

1y , 2

2y  and 2

3y ) are stretched. The probe point, 1

?y

(corresponding to 1

?
x ), can thus be well separated. This 

phenomena stems from the optimization process of LDE: 

maximizing the distances between the points of the same 

class while constraining the distances between different 

classes (see Eq. (3) and (4)). 

Though LDE has powerfully discriminating ability in 

theory, its computation (Eq. (8) and (9)) is not stable when 

B is not full rank (i.e. singular). One can deal with this 

difficulty by employing PCA to perform dimension 

reduction for the data before conducting LDE, but some 

useful information may be lost by discarding minor 

components and maintaining only principal components. 

Fig. 1(d) illustrates the idea of the proposed method, 

RLDE. Notice the position of the point, 1

?y , we can found 

that its distances to class #1 are shrunk and, meanwhile, the 

distances to class #2  are stretched. From the classification 

point of view, the effect of RLDE is equivalent in ideal 

condition. However, in the subsection 4.2, one can found 

that small size sample problem does not exist in RLDE. All 

the information can be utilized and thus RLDE is superior to 

LDE. 

4.2. Regularized LDE (RLDE)

To realize the idea of RLDE, we modified the objective 

function and the constraint of the LDE. The optimization 

problem becomes then 
2 2

, ,

( ) || || || ||T T T T

RLDE i j ij i j ij

i j i j

J w wU U x U x U x U x    (10) 

subject to  

1T
u u .                                 (11) 

From (10), one can find that the larger the value of the 

first item (of the right part of (10)) is and, at the same time, 

the less of the second item is, the larger the JRLDE is. The 

first item is the weighted squared distance between 

neighboring points belonging to different classes. In 

contrast to the first item, the second item is the weighted 

squared distance between neighboring points belonging to 

the same classes. Therefore, in a local manifold structure 

(take Fig. 1 (d) for example), points of the same class will 

move towards a compact cluster, and those of different 

classes can be separated more reliably. 

The orthogonal constraint (Eq. (11)) is introduced to 

deal with the ill-posed problem when maximizing (10).  

Eq. (10) can be rewritten as (refer to Section 3)  

( ) 2 [ ( ) ] 2 [ ( ) ]T T T T

RLDEJ tr trU U X D W X U U X D W X U

The constrained maximization can then be done using the 

method of Largrange multipliers: 

( ) [ ( ) ]

[ ( ) ] (1 )

T T

i i i

T T T

i i i i

L u u X D W X u

u X D W X u u u
       (12) 

Compute the gradients with respect to ui and set the 

gradients to zero, we have the following eigenvalue problem: 

[ ( ) ( ) ]T T

i i iX D W X X D W X u u          (13) 

with 1< 2< < d. If we employ the definition of A and B

in Section 2, (13) can be rewritten as 

( ) i i iA B u u                               (14) 

By defining C=A-B, (14) can be reformulated as  

i i iCu u                                    (15) 

Note that (15) is a standard eigenvalue problem, 

instead of the generalized eigevalue problem in (9). 

Because (15) does not involve in inverse matrix, the 

proposed method, RLDE, the small size sample problem 

can be avoided. 

5. EXPERIMENTAL RESULTS 

The proposed RLDE method is demonstrated in comparison 

to several contrasted methods including PCA [1], LPP [8], 

LDA [3], and LDE [10]. The AR face database [14] was 

used to evaluate the proposed method. The nearest 

neighborhood classifier was employed in the experiments.  
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Fig. 1 Data embedding in a local structure: (a) original data; (b) embedded by Laplacian Eigenmaps; 

(c) embedded by LDE; (d) embedded by RLDE (the proposed method) 

(b) (c) (d) 
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In the first experiment, 117 subjects are selected from a 

total of 126 subjects. Only 7 nonoccluded images per person 

from the first session are used in our experiments (see top 

line of Fig. 2). The images were cropped based on the 

centers of eyes, and the cropped images were resized to 

60 60 pixels. Then they were normalized to have zero mean 

and unit variance. Two images of each subject were 

randomly chosen for training, while the remaining five 

images were used for testing. In this way, we ran the system 

5 times and obtained 5 different training and testing sets. 

The recognition rates were found by averaging the 

recognition rate of each run (table 1).  

From table 1, we find the three supervised learning 

methods, LDA, LDE, and RLDE, outperforms the 

unsupervised learning methods, PCA and LPP. Among the 

supervised methods, the proposed method achieves the 

highest recognition rates. Furthermore, RLDE is not prone 

to overfitting. LDA is not always superior to PCA due to 

overfitting. The number of principal component, s, in LDA 

(PCA plus LDA) is at most N-C = 117 (C is class number). 

In LDE the maximum value of s is around 80. But in RLDE 

s can be maximum value N-1=233. So no information is lost 

in RLDE (80<<233) in the reconstruction sense. Note that 

we can perform RLDE on the original data, but the 

computational time is very large. 

In the second experiment, 14 images per subject were 

used (see Fig. 2). Seven images of each subject were 

randomly chosen for training, while the remaining seven 

images were used for testing. In this way, we ran the system 

5 times and obtained 5 different training and testing sets. 

The recognition rates (Table 2) were found by averaging the 

recognition rate of each run. We find that RLDE has the 

highest recognition rate. Comparing table 1 with 2, we 

might conclude that RLDE outperforms LDE significantly 

when the small size sample problem is critical. 

6. CONCLUSIONS 

We have presented a subspace learning method, called 

RLDE, to deal with the small sample problem in LDE. The 

proposed method utilizes the neighbor and class relations of 

data to compute the subspace for classification. In 

comparison to LDE, the computation of RLDE is more 

stable. Because more information of the data is reserved in 

RLDE, it outperforms LDE in terms of recognition rate.  

For future work, we will generalize RLDE into feature 

space by kernel trick. 
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Fig.2 Example images of one subject used in the experiments. 

Top: taken in the 1st session; Bottom: taken in the 2nd session

Table 2: Performance comparison on AR database (G7/P7) (%)

PCA LDA LDE RLDE 

77.53 92.87 93.27 93.62 

Table 1: Performance comparison on AR database (G2/P5) (%)
DB PCA LPP LDA LDE RLDE

#1 74.01 68.37 75.38 75.21 78.11 

#2 75.50 70.94 77.43 74.35 80.68 

#3 80.34 68.88 77.26 82.39 83.07 

#4 76.92 68.71 78.46 80.34 80.85 

#5 77.77 74.52 82.56 83.32 86.21 
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