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ABSTRACT

This work presents low complexity blind constrained data-reusing
adaptive filtering algorithms based on the minimum variance and
constant modulus cost functions. Constrained minimum variance
(CMV) and constrained constant modulus (CCM) affine projection
type algorithms are developed and investigated in a CDMA interfer-
ence suppression scenario. Computer simulations are used to ana-
lyze the proposed techniques and compare them with existing sto-
chastic gradient (SG) and recursive least-squares (RLS) type tech-
niques. The results show that the new algorithms outperform pre-
viously reported SG techniques with small additional computational
requirements and achieve a performance very close to RLS algo-
rithms at greatly reduced complexity.

1. INTRODUCTION

Linearly constrained blind adaptive filtering algorithms are useful
in several areas of communications and signal processing such as
beamforming and interference suppression for code-division-multiple-
access (CDMA) systems. In these applications, the linear constraints
correspond to prior knowledge of certain parameters such as direc-
tion of arrival (DoA) of user signals in antenna array processing [1]
and the signature sequence of the desired signal in CDMA interfer-
ence suppression [2], [3].

An important research and development field is the implemen-
tation of blind algorithms in a computationally efficient way, while
ensuring very good performance. In the literature of blind adap-
tive algorithms [4], stochastic gradient (SG) algorithms represent a
simple and low complexity solution but result in slow convergence,
depending on the eigenvalue spread of the covariance matrix of the
observation data. Conversely, recursive least-squares (RLS) type al-
gorithms have fast convergence, are independent of the eigenvalue
spread of the covariance matrix of the observation data, but require
significantly higher complexity than SG recursions. Due to their
simplicity, low complexity, and good behavior in fixed point imple-
mentations, SG algorithms are preferred for practical deployment
despite their convergence performance limitations.

Another important aspect in blind adaptation methods is the cri-
terion adopted for optimization. Amongst the unsupervised adaptive
filtering algorithms found in the literature, those based on the mini-
mum variance (MV) and the constant modulus (CM) cost functions
are some of the most promising techniques due to their simplicity
and effectiveness for jointly optimizing the adaptive filter and the
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constraints. The constrained MV (CMV) criterion and its associated
SG and RLS adaptive algorithms were studied for CDMA interfer-
ence suppression in [5], where their global convergence was also
established. The constrained CM (CCM) approach and the CCM-
based algorithms were reported in [6] and [7], where some condi-
tions for global convergence were established based on a convex-
ity forcing parameter. The existing works on low complexity blind
constrained techniques [5], [6] employ standard SG algorithms that
are not efficient with respect to convergence and steady-state perfor-
mance, whereas RLS techniques exhibit fast convergence but may
have numerical problems when implemented in fixed-point arith-
metic.

In wireless networks characterized by non-stationary environ-
ments, users frequently enter and exit the system, requiring adap-
tation methods with good tracking performance and low computa-
tional requirements. In this context, the affine projection (AP) al-
gorithm is an efficient adaptive algorithm that can achieve a good
trade-off between fast convergence and low computational complex-
ity. By adjusting the number of projections or data reuses, the perfor-
mance of the AP algorithm can range from that of the NLMS to that
of the RLS algorithm [4]. To the best of our knowledge, there are no
available general purpose blind constrained data-reusing algorithms
based on the MV and CM cost functions in the literature.

The goal of this paper is to develop blind adaptive constrained
data-reusing algorithms based on the MV and CM criteria. We con-
sider a set of linear constraints and multiple data observations to
derive the constrained minimum variance affine projection (CMV-
AP) and constrained constant modulus affine projection (CCM-AP)
adaptive recursions. The new proposed algorithms require a compu-
tational complexity and exhibit convergence performance between
those of their corresponding SG and RLS type techniques. Computer
simulations are used to analyze the proposed techniques and com-
pare them with the existing stochastic gradient (SG) and recursive
least-squares (RLS) type techniques based on the CMV and CCM
design criteria in a CDMA interference suppression scenario.

The paper is structured as follows. Section 2 describes the blind
constrained adaptive filtering framework. Sections 3 and 4 present
the proposed blind adaptive constrained algorithms. In Section 5 the
proposed algorithms are applied to blind interference suppression in
DS-CDMA systems. Section 6 is devoted to the presentation and
discussion of numerical results, while Section 7 presents the conclu-
sions.
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2. BLIND CONSTRAINED ADAPTIVE FILTERING
PROBLEM

Next, we briefly describe the framework used to derive the proposed
algorithms. We focus on the linearly constrained adaptive filtering
problem using a chosen design criterion.

Fig. 1. Linearly Constrained Blind Adaptive Filtering Framework

The approach we follow in this paper is to obtain an M -dimensional
parameter vector w that minimizes the cost function defined as the
design criterion in order to retrieve a desired signal obtained from
the M × 1 observation vector u. In many cases, to avoid the trivial
solution w = 0, it is necessary to impose some constraints on w.
In this work the constraints are given by a set of L equations given
by CHw = g where C is an M × L, L ≤ M , constraint ma-
trix and g is an L-dimensional parameter vector to be determined.
In the next sections we derive low complexity solutions based on
the CMV and CCM approaches. In particular, we develop general
purpose constrained adaptive algorithms that exploit data-reusing to
speed up convergence while keeping low complexity.

3. CONSTRAINED MINIMUM VARIANCE AFFINE
PROJECTION ALGORITHM

In this section, we develop a blind adaptive constrained data-reusing
algorithm based on the MV criterion.

Define an error vetor e(i) = UH(i)w(i) where U(i) = [u(i) . . .
. . .u(i−P + 1)] is a M ×P matrix containing P observation vec-
tors. The cost function considered is the sum of squared errors:

JMV[w(i)] = e
H(i)e(i) =

P−1�
j=0

�
w

H(i)u(i − j)
�2

= w
H(i)U(i)UH(i)w(i). (1)

So, the Lagrangian cost function can be written as:

LMV = w
H(i)U(i)UH(i)w(i) + �

�
(CH

w − g)H
λ
�

(2)

where λ is a vector containg the Lagrange multipliers and �(·) se-
lects the real part. Taking the gradient with respect to w we obtain
the following equation to update w:

w(i + 1) = w(i) − U(i)e(i) − Cλ. (3)

Enforcing the constraints on w to be CHw(i + 1) = g(i) and solv-
ing for the Lagrange multipliers we obtain:

C
H
w(i) − C

H
U(i)e(i) − C

H
Cλ = g(i)

λ = (CH
C)−1

�
C

H
w(i) − C

H
U(i)e(i) − g(i)

�
. (4)

Substituting (4) in (3) we arrive at the following recursion:

w(i + 1) = Π [w(i) − U(i)e(i)] + C(CH
C)−1

g(i) (5)

where
Π =

�
I − C(CH

C)−1
C

H
�
. (6)

3.1. Normalizing the Step-Size

In order to devise a normalized version of the algorithm, we intro-
duce a convenient P × P matrix step-size µ

w(i + 1) = Π [w(i) − U(i)µe(i)] + C(CH
C)−1

g(i) (7)

and propose a normalized step size based on the minimization of the
a posteriori cost function.

JMV[w(i + 1)] =
���UH(i)

�
Π [w(i) − U(i)µe(i)] +

+C(CH
C)−1

g(i)
����

2

. (8)

So the optimum step-size is given by:

µ = min
µ

JMV[w(i + 1)]. (9)

Taking the gradient with respect to µ and setting it to zero, we obtain
the optimum step-size

µ = µ0

�
U

H(i)ΠU(i)
�−1

, (10)

where µ0 is a constant. Note that for the special case of P = 1 the
results are identical of those in [8].

4. CONSTRAINED CONSTANT MODULUS AFFINE
PROJECTION ALGORITHM

In this section, we develop blind adaptive constrained data-reusing
algorithms based on the CM criterion.

For the CM criteria, the jth component of the P ×1 error vector
e(i) is given by ej(i) = |wH(i)u(i − j)|2 − 1. As in the previous
section, the cost function considered is the sum of squared errors:

JCM[w(i)] = e
H(i)e(i) =

P−1�
j=0

[|wH(i)u(i − j)|2 − 1]2. (11)

The Lagrangian cost function can be written as:

LCM =

P−1�
j=0

[|wH(i)u(i−j)|2−1]2+�
�
(CH

w − νg)H
λ
�

(12)

where ν is a constant to ensure the convexity of the CM-based func-
tion. Denoting zj(i) = wH(i)u(i − j) and ej(i) = |zj(i)|

2 − 1,
substituting in (12) and taking the grandient with respect to the filter
parameters we obtain the following recursion:

w(i + 1) = w(i) +

P−1�
j=0

ej(i)z
∗
j (i)u(i − j) − Cλ. (13)
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After applying the constraints and solving for the Lagrange multipli-
ers we obtain the recursion for the filter coefficients:

w(i + 1) = Π
�
w(i) −

P−1�
j=0

ej(i)z
∗
j (i)u(i − j)

�
+

+C(CH
C)−1νg(i) (14)

which can be written in compact form as:

w(i + 1) = Π
�
w(i)−U(i)Z(i)e(i)

�
+C(CH

C)−1νg(i) (15)

where Z(i) = diag
�
z∗
0(i), . . . , z∗

P−1(i)
�

is a P × P diagonal ma-

trix, e(i) is the error vector, and Π is given by (6).

4.1. Normalizing the Step-Size

In a procedure similar to the CMV we multiply the error vector e(i)
in (15) by a P × P step-size matrix. The normalized matrix µ pro-
posed here for the CCM parameter estimation is an extension of the
result obtained in [9] for P = 1 through the minimization of the a
posteriori cost function and is given by

µ = µ0M
�
U

H(i)ΠU(i)
�−1

(16)

where M = diag
�

1
|z0(i)|(|z0(i)|−1)

, . . . , 1
|zP−1(i)|(|zP−1(i)|−1)

�

is a P × P diagonal matrix and µ0 is a constant.

5. BLIND INTERFERENCE SUPPRESSION FOR DS-CDMA
SYSTEMS

Here we apply the proposed algorithms to the problem of blind in-
terference suppression in DS-CDMA systems. Consider the uplink
connection of a BPSK DS-CDMA system with K users, N chips per
symbol, and Lp paths. Assuming that the channel is constant during
each symbol interval, the received signal after coherent demodula-
tion and filtering by a chip-pulse matched filter and sampled at chip
rate yields the (M = N + Lp − 1) × 1 received vector

u(i) =

K�
k=1

Akbk(i)Ckhk(i) + η(i) + n(i) (17)

where n(i) = [n1(i) . . . nM (i)]T is a complex Gaussian noise
vector with E[n(i)nH(i)] = σ2I, where (·)T and (·)H denote trans-
pose and Hermitian transpose, respectively. The operator E[·] stands
for ensemble average, bk(i) ∈ {±1 + j0} is the symbol for user k
with j2 = −1, η(i) represents the intersymbol interference (ISI), the
amplitude of user k is Ak, the kth user channel vector is hk(i) =
[hk,0(i) . . . hk,Lp−1(i)]

T , and the columns of the M × Lp convo-
lution matrix Ck contains one-chip shifted versions of the signature
sequence for user k given by sk = [ak(1) . . . ak(N)]T .

Let us describe the design of blind linearly constrained detectors.
Consider the received vector u(i), and Ck as the M ×Lp constraint
matrix for user k. The receiver design determines an FIR filter wk(i)
with M coefficients, that provides an estimate of the desired symbol,
as given by

b̂k(i) = sgn
�
�
�
w

H
k (i)u(i)

��
(18)

subject to a set of multipath constraints given by CH
k wk(i + 1) =

hk(i) for the CMV case, or CH
k wk(i + 1) = νhk(i) for the CCM

case, where hk(i) is the kth user channel vector ,sgn(·) is the signum
function, and the receiver parameter vector wk is optimized by the
CMV or the CCM criterion, which assume knowledge of the chan-
nel. However, when multipath is present, these parameters are un-
known and time-varying, requiring channel estimation. Here, we
adopt the simple and effective blind adaptive SG channel estimation
algorithm of [10].

6. SIMULATIONS AND RESULTS

The simulation results presented are for a BPSK synchronous DS-
CDMA system that employs Gold sequences of length N = 31.
Because we focus on uplink scenarios, users experimence differ-
ent channel conditions. All channels assume that Lp = 3. It is
also assumed here that the channels experienced by different users
are statistically independent and identically distributed. For fad-
ing channels, the sequence of channel coefficients for each user k
(k = 1, . . . , K), hk,l(i) = pk,lαk,l(i) (l = 0, 1, 2, . . . , Lp − 1)
is obtained with Clarke’s model [11]. This procedure corresponds to
the generation of independent sequences of correlated unit power
complex Gaussian random variables [E[|α2

k,l(i)|] = 1] with the

path weights pk,l normalized so that
�Lp

l=1 p2
k,l = 1. In this work

p1 = 0.7581, p2 = 0.5307 and p3 = 0.3790. The phase ambiguity
derived from the blind channel estimation method in [10] is elimi-
nated in our simulations by using the phase of hk,0 as a reference,
and for fading channels we assume ideal phase tracking and express
the results in terms of the normalized Doppler frequency fdT (cy-
cles/symbol).

In the experiments, we compare an improved [8] (normalized
step-size) version of the blind receiver of Xu and Tsatsanis [5], de-
noted CMV-SG, an improved [9] (normalized step-size) version of
the constrained constant-modulus of Xu and Liu [6], denoted CCM-
SG, the RLS-like versions of CMV [5] and CCM [7], and the pro-
posed AP-like versions, denoted CMV-AP and CCM-AP. For the
proposed algorithms, we used P = 2 and P = 3 in the experiments.
Note that P = 4 can theoretically increase convergence speed, even
though we found in our studies that it did not lead to performance
improvements, due to increased misadjustment. All experiments are
averaged over 100 runs and the parameters of the algorithms are op-
timized for each scenario.

In Fig. 2 we assess the average BER performance of the ana-
lyzed algorithms under fading (fdT = 10−4). We consider a non-
stationary scenario where at a given time, users enter the system and
the blind adaptive algorithms are subject to a sudden change in the
environment. The system starts with K = 8 users whose power
distribution follows a log-normal random variable with standard de-
viation (sd) equal to 1.5 dB. At 1000 symbols, 4 users enter the cell
and the power control is loosened, resulting in a power distribution
with sd equal to 3 dB for all users.

The results show that the proposed CCM-AP and CMV-AP out-
perform their SG counterparts and perform near their RLS-like ver-
sions. Note that for moderate loads, the proposed CCM-AP for
P = 2 performs even better than the CMV-RLS. For higher loads,
the proposed algorithms, despite a slight performance degradation in
relation to the RLS-like versions, still perform much better than their
SG versions.

In Fig. 3 we assess the SINR (signal-to-interference-plus noise
ratio) performance in a 12-user, moderate near-far scenario and un-
der faster (fdT = 10−3) fading. We assume that the user of interest
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is User 1. One interferer has a power level 10 dB above and another
has 7 dB above the desired user. The remaining 9 interferers have the
same power as the desired user, which corresponds to Eb/N0 = 15
dB. The results show that the proposed algorithms mantain good per-
formance under different fading scenarios.
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Fig. 2. Bit error rate versus number of symbols for a non-stationary
scenario (fdT = 10−4).
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Fig. 3. Signal-to-interference-plus-noise ratio versus number of
symbols for a faster fading scenario (fdT = 10−3).

7. CONCLUSIONS

This work presented low complexity blind constrained data-reusing
adaptive filtering algorithms based on the minimum variance and
constant modulus cost functions. The proposed techniques were
evaluated through computer simulationss and comparisons with ex-

isting SG and RLS implementations in a CDMA interference sup-
pression scenario were performed. The proposed algorithms have
shown performance close to the RLS implementations at signifi-
cantly lower complexity.
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