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ABSTRACT

Constrained normalized adaptive filters are used as a computation-
ally efficient class of receivers to decrease multiple access interfer-
ence (MAI). Some receivers estimate the amplitude and/or use dif-
ferent normalization parameters in order to improve the convergence
speed. In this paper, we derive the steady-state performance of this
class of receivers, from which it is revealed that the normalization
parameters that aim at increasing the convergence speed deteriorate
the steady-state performance if the step-size is not changed. Addi-
tionally, we prove that an estimate of the desired user’s amplitude
can greatly improve the steady-state performance. Computer simu-
lations show remarkably good agreement with our analysis.

1. INTRODUCTION

Blind adaptive receivers are strong candidates to mitigate multiple
access interference (MAI) in DS/CDMA systems, as they offer man-
ageable complexity and many proposals do not require more infor-
mation than the information required by the rake receiver [1]–[5].
In this paper, we focus on a common class of constrained normal-
ized adaptive receivers of which the adaptive filters geometrically
belong to a hyperplane determined by the desired user’s signature.
Blind adaptive receivers of this type include, for example, the OPM-
based gradient projection [3] (OPM-GP) algorithm, the generalized
projection [3] (GP) algorithm, the space alternating generalized pro-
jection [3] (SAGP) algorithm and their versions with a modified nor-
malization parameter that increases the convergence speed [4], [5].
Some of these blind adaptive receivers update the adaptive filter us-
ing estimates of the desired user’s amplitude and symbols.

We derive the steady-state performance of the aforementioned
algorithms by including the (possible) information about the desired
user’s amplitude into the energy-conservation relation [6, Ch. 6],
which originally considered a different system model. Hence, it be-
comes clear that the algorithms that do not use any information about
the desired user’s signature have a steady-state performance that is
strongly limited by the choice of the step-size. Additionally, we
study how the steady-state performance is influenced by the angle
between the desired user’s signature and the input signal.

It is worthy to mention that the algorithms discussed in this paper
are simple examples of a more general class of receivers based on the
adaptive projected subgradient method [7]. Additionally, our results
can be immediately extended to adaptive array antenna systems if
the sources transmit signals with constant modulus. Due to the space
limitation, the proofs presented in this paper are only outlined.

2. SYSTEM MODEL

For simplicity, we consider a synchronous BPSK DS-CDMA system
with K active users and M chips per symbol, although an extension

of our analysis to asynchronous systems with constant modulus sym-
bols is possible. If the receiver is synchronized with the desired user,
the received vector containing M samples of the symbol interval i is
given by

r[i] = A1b1[i]s1 +
KX

k=2

Akbk[i]sk + n[i]. (1)

where Ak ∈ [0,∞), bk[i] ∈ {−1, +1}, and sk ∈ R
M (s1, . . . , sK

linear independent) are the kth user’s amplitude, transmitted bit, and
received signature [2]. Without loss of generality, we can assume
that the first user is the desired one and ‖sk‖

2 = s
T
k sk = 1 (k =

1, . . . , K). The following common assumptions for the analysis of
CDMA systems are used in this paper:

Assumption 1 The noise vector n[i] is a zero-mean random vector
with E{n[i]n[i]T ]} = σ2

nIM , where IM is the M -dimensional
identity matrix.

Assumption 2 E {bk[i]} = 0, k = 1, . . . , K and

E {bq[i]br[i]} =

j
1, q = r,
0, otherwise.

Assumption 3 bk[i], k = 1, . . . , K and n[i] are mutually indepen-
dent.

The detector estimates the received bits with the aid of a properly
designed filter h ∈ R

M by

b̂1[i] = sgn(hT
r[i]), (2)

where sgn(x) =

j
+1, for x ≥ 0,
−1, otherwise.

Remark 1 Although the model in (1) represents a synchronous sys-
tem over a flat-fading channel, an extension to asynchronous systems
over frequency-selective channels is possible [1, Sec. II].

3. OPTIMAL CONSTRAINED FILTERS

The linear minimum mean-square error (MMSE) filter is expressed
by

h
mmse
opt ∈ arg min

h

E{|hT
r[i] − b1[i]|

2}. (3)

Under Assumptions 1–3, we readily verify that h
mmse
opt =

A1R
−1

s1, where R = E[r[i]r[i]T ] =
PK

k=1
A2

ksks
T
k + σ2

nIM .
Additionally, from (2), we conclude that the bit-error-rate (BER) is
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Table 1. Characterization of the adaptive filters under study
Algorithm α b̂1[i] g(r[i])

GP [3] A1 sgn(hT
i−1r[i]) ‖r[i]‖2

SAGP [3] Â1 sgn(hT
i−1r[i]) ‖r[i]‖2

OPM-GP [3] 0 - ‖r[i]‖2

Modified GP A1 sgn(hT
i−1r[i]) r[i]T P r[i]

Modified SAGP [5] Â1 sgn(hT
i−1r[i]) r[i]T P r[i]

Modified OPM-GP [4] 0 - r[i]T P r[i]

the same for h
mmse
opt and any filter of the form h = βR

−1
s1, pro-

vided that β > 0. On the other hand, we can see that hopt =
(R−1

s1)/(sT
1 R

−1
s1) is a scaled version of h

mmse
opt and the solu-

tion to the optimization problem

hopt ∈ arg min
h∈Cs

E{|hT
r[i] − αb1[i]|

2}, ∀α ∈ [0,∞),

(4)

where Cs := {h ∈ R
M |hT

s1 = 1}. It is clear that by imposing
the constraint Cs, the solution does not change irrespective of the
choice of α.

4. ADAPTIVE FILTERS FOR MAI SUPPRESSION

The adaptive filters of our interest, which track the solution hopt in
(4), are commonly expressed by

hi = P

»
hi−1 − µ(hT

i−1r[i] − b̂1[i]α)
r[i]

g(r[i])

–
+ s1, (5)

where h0 = s1 and µ ∈ (0, 2] is the step-size. The parameters
α, b̂1[i], and the function g(r[i]) vary according to the algorithms
shown in Table 1. In this table, the parameter Â1 is an estimate of
A1. The original algorithms and their modified versions differ in
the choice of the normalization parameter g(r[i]). The matrix P =
(IM − s1s

T
1 ) is the orthogonal projection onto (span{s1})

⊥. It is
clear that P has the following properties: (a) P

2 = P , (b) P s1 = 0
and (c) ‖P x‖ ≤ ‖x‖, x ∈ R

M . We newly introduce the modified
GP algorithm, so that the GP algorithm has its modified counterpart.
Additionally, we have h

T
i s1 = h

T
opts1 = 1, i = 0, 1, 2, . . . .

For mathematical tractability, in our analysis we assume b̂1[i] =
b1[i] for the algorithms using α �= 0 (NOTE: This assumption does
not always hold in our simulations). Hence, for these blind algo-
rithms with α �= 0, our analysis for the steady-state signal-to-
interference-plus-noise ratio (SINR) shows slightly better agreement
for our simulations in high SNR environments than in low SNR en-
vironments, although very good agreement is achieved even in low
SNR environments. We study the performance of these algorithms
by fixing α to a possibly erroneous estimate of A1. The analysis
under these assumptions reveals how well the amplitude estimation
algorithm should perform in order to achieve a desired SINR level.

For notational simplicity, we define the following:

h̃i := hi − hopt ∈ (span{s1})
⊥ (6)

ep[i] := r[i]T P h̃i = r[i]T h̃i (7)

ea[i] := r[i]T P h̃i−1 = r[i]T h̃i−1 (8)

v(α)[i] := h
T
optr[i] − b1[i]α (9)

u(α)[i] = h
T
i−1r[i] − b1[i]α, (10)

where subscripts a and p stand for a priori and posteriori, respec-
tively. With this notation, which includes the available information
about the desired user’s amplitude, we adopt the following assump-
tions in order to simplify our analysis in Sec. 5.

Assumption 4 At steady-state, ea[i] and g(r[i]) (for the functions
in Table I) are independent.

Noticing that (i) in CDMA systems the signatures are designed to
satisfy s

T
k sj ≈ 0, j �= k, (ii) the model in (1) utilizes symbols with

constant modulus, we have that g(r[i]) ≈ constant when the noise
power approaches zero, and thus we justify the above assumption
for the noiseless case. However, even in more general situations, it
is known that at steady-state ea[i] is often less sensitive to the input
r[i] [6, p. 293]. Therefore, this assumption provides good approxi-
mations for our steady-state analysis even in low SNR environments
with random signatures, as verified by our simulations in Sec. 6.

Assumption 5 v2(α)[i] is independent of r[i].

This assumption holds asymptotically as the noise variance
approaches zero. In the noiseless case, the decorrelating filter and
the filter in (4) become identical [8, Lemma 2], and thus h

T
optr[i] =

A1b1[i], which implies that v2(α)[i] is constant. Nonetheless, in
more general situations, Assumption 5 simplifies our steady-state
analysis, which shows good agreement with our simulations.

5. STEADY-STATE PERFORMANCE

In this section, we calculate the steady-state SINR of the adaptive
filters in (5). We start by the following Lemma:

Lemma 1 The adaptive filters in (5) satisfy lim
i→∞

E{hi−1} ≈ hopt

for µ ∈ (0, 2].

Proof (sketch): The main idea is to use the approximations

E

j
r[i]r[i]T

g(r[i])

ff
≈

E{r[i]r[i]T }

E{g(r[i])}
and E

j
b1[i]r[i]

g(r[i])

ff
≈

E{b1[i]r[i]}

E{g(r[i])}
=

A1s1

E{g(r[i])}
, which are justified by the discussion

after Assumption 4, and then proceed in a similar way to the one for
nonnormalized algorithms [2, Sec. IV-A].

Proposition 1 For the model in (1) and under Assumptions 1–5, the
SINR,

SINR(hi−1) =
A2

1

E{|hT
i−1r[i] − A1b1[i]|2}

, (11)

of the adaptive filters hi−1 ∈ Cs in (5) is given at steady-state by

lim
i→∞

SINR(hi−1) ≈
A2

1

σ2
v(α)µ

2b/a − µ
+ h

T
optRhopt − A2

1

, (12)

where a = E

j
r[i]T P r[i]

g2(r[i])

ff
, b = E

j
1

g(r[i])

ff
, and

σ2
v(α) = E{v2(α)[i]} = α2 − 2αA1 + h

T
optRhopt.

Proof (sketch): With the aid of Lemma 1, the denominator of (11)
at steady-state can be approximated by

E{|hT
i−1r[i] − A1b1[i]|

2} ≈ E{e2
a[i]} + h

T
optRhopt − A2

1,

i → ∞. (13)
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Hence, in order to obtain the steady-state SINR, we need to evaluate
E{e2

a[i]}, i → ∞.
For the adaptive filters in (5), by P (hi) = P (hi − s1) =

hi − s1, we have P hi = P [hi−1 − µu(α)[i]r[i]/g(r[i])] .
From this equation, we find the following variance-relation for

steady-state performance [6, Ch. 6]:

E

j
µu2(α)[i]

r[i]T P r[i]

g2(r[i])

ff
= 2E

j
ea[i]u(α)[i]

g(r[i])

ff
. (14)

Using the relation u(α)[i] = ea[i] + v(α)[i] in the last equation
and from Assumptions 4 and 5, we get

E{e2
a[i]} =

σ2
v(α)µ

2b/a − µ
. (15)

Therefore, from (11), (13) and (15), we arrive at the desired re-
sult.

Next, we compare the steady-state performance of the filters in
(5) by studying the ratio a/b and we also study the influence of the
parameter α.

5.1. Algorithms based on g(r[i]) = r[i]T P r[i]

This case is the simplest one, since a = b. Hence, from Proposition
1, the steady-state SINR for the modified algorithms can be approx-
imated by

SINRmodified ≈
A2

1

σ2
v(α)µ

2 − µ
+ h

T
optRhopt − A2

1

(16)

In the last equation, the global maximum is reached at α = A1.
This implies that a good estimate of the amplitude A1 is expected to
improve the steady-state performance.

5.2. Algorithms based on g(r[i]) = ‖r[i]‖2

For these original algorithms, by Cauchy-Schwartz’s inequality we
have

a = E

j
r[i]T P r[i]

g2(r[i])

ff

≤ E

j
‖r[i]‖‖P r[i]‖

g2(r[i])

ff
≤ E

j
‖r[i]‖2

g2(r[i])

ff
= E

j
1

‖r[i]‖2

ff
= b.

Therefore, at steady-state we conclude that

SINRoriginal ≈
A2

1

σ2
v(α)µ

2
b

a
− µ

+ h
T
optRhopt − A2

1

≥
A2

1

σ2
v(α)µ

2 − µ
+ h

T
optRhopt − A2

1

= SINRmodified

(17)

As in the case of modified filters, the original filters with ampli-
tude estimation can perform potentially better than those that rely on
α = 0. It is also clear that the original filters provide higher SINR
at steady-state than their modified versions when they have the same
step-size. Nevertheless, care must be taken when comparing these
algorithms. If a modified algorithm employs a smaller step-size than

its original version, it may happen that both algorithms achieve the
same steady-state performance, with the modified algorithm having
superior convergence rate. If the bound is tight, the above inequal-
ity is useful to calculate the performance of the original algorithms,
as SINRoriginal can be well approximated by SINRmodified, which
does not require the determination of the ratio b/a in (12).

For the original algorithms, it is possible to check in which cases
the lower bound in (17) is tight. By P r[i] = r[i]− (r[i]T s1)s1, we
get

a

b
=

E

j
r[i]T P r[i]

‖r[i]‖4

ff

E

j
1

‖r[i]‖2

ff

= 1 −

E

j
‖r[i]‖2‖s1‖

2 cos2 θ[i]

‖r[i]‖4

ff

E

j
1

‖r[i]‖2

ff = 1 −

E

j
cos2 θ[i]

‖r[i]‖2

ff

E

j
1

‖r[i]‖2

ff ,

(18)

where cos θ[i] = r[i]T s1/‖r[i]‖. From the ratio a/b derived above,
we see that, if cos θ[i] is small on average, we may expect that
a/b ≈ 1, and thus the bound in (17) is tight. A small cos θ[i] has the
equivalent geometrical interpretation of r[i] being nearly orthogonal
to s1. Therefore, by also checking the model in (1), a tight bound
happens when good spreading codes are used (sT

k sj ≈ 0, k �= j),
such as Gold codes, and the interfering users’ power is high as com-
pared to the noise power and the desired user’s power.

Remark 2 As σn approaches 0, we have that σ2
v(α)|α=0 =

(hT
optr[i])2 = A2

1 and h
T
optRhopt = A2

1 (see the discussion af-
ter Assumption 5). Hence, the steady-state SINR of the modified
OPM-GP algorithm is simply given by SINRmodifiedOPM−GP =
(2 − µ)/µ. This is the maximum SINR that this adaptive filter can
provide for a given step-size µ, as the presence of noise cannot in-
crease the SINR.

6. SIMULATION RESULTS

Figure 1(a) shows the theoretical and simulated curves for the OPM-
GP algorithm, the GP algorithm and their modified counterparts.
The system has 20 users and the signatures are chosen from length-
31 Gold spreading codes. The desired user’s amplitude is A1 = 1.
Each interferer has 9.54 dB power advantage as compared to the de-
sired user. The step-size for all algorithms is set to µ = 0.3. The
simulated values are obtained by averaging the last 1000 out of 3000
iterations of the ensemble-average curve, which in turn is obtained
by averaging the SINR curve over 1000 realizations. The ratio b/a,
which is necessary to calculate the SINR of the original algorithms,
is obtained through simulations. The SINR limit for the modified
OPM-GP is calculated according to Remark 2. As the MAI is high
and Gold sequences are employed, the original algorithms and their
modified versions show very close performance, as predicted [see
(17)]. Moreover, even for low SNR, the SINR of the algorithms
based on estimations of the received bits is consistent with our anal-
ysis, which corroborates our assumptions.

In Fig. 1(b) we decrease the number of users to five. Addition-
ally, the signatures are changed to random sequences and all users
have the same power. With these changes, we increase cos θ[i] in
(18) on average. Other parameters are the same as in Fig. 1(a). It is
clear that the gap in terms of steady-state performance between the
original algorithms and their modified counterparts (with the same
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Fig. 1. Simulated and theoretical SINR curves as a function of SNR.
(a) High MAI and Gold sequences. (b) Low MAI and random se-
quences.

step-size) is more accentuated for the OPM-GP algorithm, as σ2
v(α)

is larger. This observation is also predicted by (17).
In Fig. 2 we consider the modified GP algorithm with amplitude

mismatches, i.e., α �= A1, for different step-sizes under SNR 15 dB,
which gives an insight into the performance of the SAGP algorithm.
Other parameters are the same as in Fig. 1(a). As the input signal
presents low correlation with s1, the performance of the GP algo-
rithm is similar to the performance of its modified counterpart, and
thus the simulated curve for the original GP algorithm is omitted for
visual clarity. Due to wrong estimates of the received bits, the al-
gorithm is unable to reduce MAI for a large value of the parameter
α. However, for α = 0, which corresponds to the modified OPM-
GP algorithm, and for α not much different from the desired user’s
amplitude, our analysis and the simulation results show remarkably
good agreement. It is also clear that the algorithm is robust to am-
plitude mismatches for small step-sizes.

7. CONCLUSION

We have studied the steady-state performance of the OPM-GP al-
gorithm, the GP algorithm, the SAGP algorithm, and their versions
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Fig. 2. SINR as a function of α for different values of µ. SNR 15
dB, A1 = 1.

with a modified normalization parameter. Our results are valuable
to help designers choose the most suitable algorithm for a given
DS/CDMA system.

We have shown that the SAGP and GP algorithms improve the
performance of the OPM-GP algorithm by utilizing information about
the desired user’s amplitude. Geometrical considerations of a CDMA
system show the conditions under which the original algorithms and
their modified versions perform almost equally at steady-state when
they use the same step-size.
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