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ABSTRACT

This paper proposes a stochastic model for the generalized subband

decomposition normalized LMS (NLMS) algorithm. This

algorithm is used as an alternative to the standard NLMS one,

aiming to improve the convergence speed under correlated input

data. Analytical models for the first and second moments of the

filter weights are derived taking into account the time-varying

nature of normalized step size. Moreover, in the model expressions

a positive regularization parameter  is added to the power

estimates, preventing division by zero during the power

normalization process. Through simulation results, the accuracy of

the proposed analytical model can be verified.

1. INTRODUCTION

Among the various adaptive algorithms, the LMS one is the most

popular and widely used due to its simplicity and robustness.

However, such an algorithm suffers from slow convergence when

the input signal is highly correlated. In this context, several

adaptive subband structures have been proposed aiming to improve

the convergence behavior of the standard LMS algorithm. One of

them is the structure based on the generalized subband

decomposition (GSD) of FIR filters [1]. The goal of this approach

consists of implementing an N-weight FIR filter as an M-branch

parallel structure with 1 M N . Each branch is composed of the

cascade of an interpolator and a sparse subfilter, acting on a

specific frequency subband. The adaptive version of the GSD

structures is obtained by adapting the subfilters while the

interpolators are maintained fixed. The latter may be implemented

by using an orthogonal transform such as DCT, DFT, Hadamard,

etc. The fact of using frequency subband filters permits to increase

the convergence speed of the overall adaptive structure, as well as

to reduce the required computational burden by neglecting the

frequency bands presenting low activity.

The convergence speed is improved by using the NLMS algorithm

in each subfilter [1]. Thus, the GSD structure associated with the

normalized-LMS results in the GSD-NLMS algorithm. It also

presents the advantage of a reduced transform size when compared

with the transform-domain LMS (TD-LMS) algorithm.

Regarding the stochastic analysis of the GSD-NLMS algorithm [1]

a simplifying consideration is used. This analysis disregards the

time-varying nature of the step-size normalizing operation. Such an

assumption simplifies considerably the involved mathematics;

however it leads to a statistical model that does not allow for a

time-varying step-size parameter condition. Thus, the aim of this

paper is to derive an appropriate statistical model to describe the

GSD-NLMS algorithm behavior considering the time-varying

nature of the step-size parameter. In particular, we derive analytical

expressions for the first and second moments of the adaptive filter

weight vector for Gaussian data and slow convergence condition.

Through numerical simulations, we verify the very good agreement

between the results obtained with the Monte Carlo method and the

predictions from the proposed analytical model.

2. GENERALIZED SUBBAND DECOMPOSITION-LMS

ALGORITHM

This section discusses the basic expressions that describe the

GSD-LMS algorithm [1]. The adaptive subband structure is shown

in Fig. 1. The input signal ( )x n  is first processed by an M-point

unitary transform, implemented by an M M nonsingular matrix T ,

generating the signals ( )ku n  which are then filtered by the sparse

subfilters ( )kW z . All samples of the transformed signals used as

inputs of the subfilters form the KM-dimensional vector a ( )nu ,

given by
T

T T T
a ( ) ( ) ( ) [ ( 1) ] ,n n n L n K Lu u u u       (1)

where

T

0 1 1( ) ( ) ( ) ( )Mn u n u n u nu .                (2)

The vector a ( )nu  is related to the input vector

T
( ) ( ) ( 1) ( 1)n x n x n x n Nx ,              (3)

by

T
a a( ) ( )n nu T x .                               (4)

Matrix T
aT  of dimension KM N  is related to matrix T  by

( )

T ( ( ))
a

(( 1) )

(( 1) )

        

   

            

M M M N M

M L M N L M

M K L

KM K L M

T 0

0 T 0

T

0 T

,                              (5)

where 0  represent null matrixes.

By defining the generalized subband weight vector a ( )nw  as the

vector containing all the weights of the subfilters as
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T
T T T

a 0 1 1( ) ( ) ( ) ( )Kn n n nw w w w ,           (6)

where
T

0, 1, 1,( ) ( ) ( ) ( )l l l M ln w n w n w nw ,

0, , 1l K ,       (7)

the filter output ( )y n  can be computed as follows:

T
a a( ) ( ) ( )y n n nu w .                              (8)

The corresponding error signal ( )e n  is given by

( ) ( ) ( )e n d n y n ,                                (9)

where ( )d n  represents the desired signal. By using the NLMS

algorithm, the weight update equation is [1]

1
a a a a( 1) ( ) ( ) ( ) ( )n n d n y n nw w D u ,         (10)

where

a

D 0 0

0
D

0

0 0 D

,                             (11)

and 2 2
0 1[  ... ]MdiagD , with the operator [.]diag  denoting a

diagonal matrix, and  is the step size parameter.
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Fig. 1. Adaptive version of the GSD structure.

The elements of aD  are the variances 2
i  of the ( )iu n  elements of

vector a ( )nu . Thus, to implement the GSD-NLMS algorithm it is

necessary to know the variances 2
i  for accomplishing the

step-size normalizing operation. Instead of using the instantaneous

value of power, which is susceptible to overshoot during the

adaptation process, it is of common practice to use an averaged

power [2]. For this purpose, we use here the following estimate:

w 1
2 2

w 0

1
( ) ( )

M

i i

k

n u n k
M

,                         (12)

where ( )iu n  for 0,1, , 1i M  is the ith output signal after the

M M–transformation, and wM  is the length of the observation

window. This estimation makes 2
i  time-varying. For that, in our

approach matrix aD  is then replaced in (10) by its time-varying

version a ( )nD  having now as diagonal elements 2( )i n . The

normalization matrix ( )nD  reads then

2 2
0 1( ) [ ( )  ... ( )  ]Mn diag n nD .                   (13)

Note that a small positive regularization parameter  is added to

each diagonal element to prevent division by zero when -1
a ( )nD  is

performed. Such a parameter is also considered in the proposed

model.

3. ANALYSIS

3.1. Mean-weight behavior

In this section the first moment of the adaptive weight vector is

obtained by taking the expectation on both sides of (10). By using

the simplifying assumption that a ( )nw  and a ( )nu  are statistically

independent [2]-[4], we can write

-1
a a a a

1 T
a a a a

( 1) ( ) ( ) ( ) ( )

                   ( ) ( ) ( ) ( ) .

E n E n E n n d n

E n n n E n

w w D u

D u u w
          (14)

The expected values of the second and third terms on the r.h.s. of

(14) must now be determined. For such, we use the simplifying

assumption give by the Averaging Principle [5]. It states that given
1

a ( )nD  and T
a a( ) ( )n nu u , jointly stationary processes, such that

-1
a ( )nD  is slowly varying with respect to T

a a( ) ( )n nu u , then

-1 T
a a a[ ( ) ( ) ( )]E n n nD u u

a a

-1 T -1
a a a a[ ( )] [ ( ) ( )] [ ( )] .E n E n n E n u uD u u D R       (15)

Similarly,

-1
a a[ ( ) ( ) ( )]E n n d nD u

a

-1 -1
a a a[ ( )] [ ( ) ( )] [ ( )] dE n E n d n E n uD u D p ,       (16)

where
a a

T
a a( ) ( )E n nu uR u u  and 

a a ( ) ( )d E n d nup u  are the

transformed-input autocorrelation matrix and crosscorrelation

vector, respectively. By substituting (15) and (16) into (14), we

obtain

a[ ( 1)]E nw

a a a

-1 -1
a a a{ [ ( )] } [ ( )] [ ( )] dE n E n E nu u uI D R w D p .  (17)

The derivation of (17) is concluded by determining the expected

value -1
a[ ( )]E nD . For such, we assume that the process 2{ ( )}iu n

has a Chi-square distribution with wM  degrees of freedom [6].

Such an assumption is valid for independent Gaussian processes

[6]. In our case, 2{ ( )}iu n  does not fulfill completely such a

requirement. However, we have verified through simulations that

the obtained model leads to very good results even for highly

correlated signals ( )iu n . Finally, the sought expected value is

given by [2]

a a

a a

-1 1w
a

w

2
2 1w

w w

[ ( )] [diag( )]
( 2)

                   - [diag( )] .
( 2)( 4)

M
E n

M

M

M M

u u

u u

D R

R

       (18)
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3.2. Steady-state weight vector

By substituting (4) into (17), we obtain

-1 T
a a a a a

-1 T
a a

[ ( 1)] [ ( )] [ ( )]

                       [ ( )] d

E n E n E n

E n

xx

x

w I D T R T w

D T p

        (19)

Now, by applying a rotation on the axis as

1
a a

2

( ) [ ( )] [ ( )]n E n E n
B

v B w w
B

              (20)

where matrix B  of dimension ( ) ( )KM KM  has the first N  rows

termed 1B , spanning the row space of -1
a a[ ( )]E nT D , and the

remainder ( )KM N  rows, termed 2B , spanning the null space of

-1
a a[ ( )]E nT D . Since matrix B  must be orthogonal, then the first

N  elements of ( )nv  are the components // ( )nv  included in the

space spanned by the rows of 1B , and the other KM N

components called ( )nv  are perpendicular to this space. Thus,

// ( )
( )

( )

n
n

n

v
v

v
.                                   (21)

By substituting (20) and (21) into (19), we get

// //

T T
a 1 // a 2

( 1) ( )
2

( 1) ( )

( ) ( )
            2  

dn n

n n

n n

x

xx xx

v v p

v v 0

R T B v R T B v

0

   (22)

where -1 T
1 a a[ ( )]E nB D T . From (22) it can be seen that only the

// ( )nv  components are updated. In other words, vector ( )nv

remains with its given initial value. Thus, we can write

T 1 1 T
// a 1 a 2( ) ( ) [ (0)]dxx xv T B R p T B v ,          (23)

and

2 a( ) (0) [ (0)]Ev v B w .                     (24)

The steady-state value a[ ( )]E w  can now be calculated by using

(23) and (20). Thus,

a[ ( )]E w

T 1 1 T
//T T a 1 a 2

( ) ( ) [ (0)]

( ) (0)

dxx x
v T B R p T B v

B B
v v

  (25)

Substituting (25) into the optimum weight vector expression,

given by [1]

a a aopt du u uR w p ,                                (26)

it can be demonstrated that (25) satisfies relation (26).

3.3. Learning curve and second moment of the weight-error

matrix

Now, let us consider the weight-error vector given by

a a opt( ) ( )n nv w w , where optw  is obtained from (25). By

expressing the error signal as a function of both the transformed

signals and weight-error vector, we have

T T
a a a opt

T
o a a

( ) ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ,

e n d n n n n z n

e n n n

u v u w

u v
            (27)

where ( )z n  is a measurement noise, i.i.d., zero-mean with variance

2
z  and uncorrelated with any other signal in the system; o ( )e n

represents the estimation error, given by

T
o a opt( ) ( ) ( ) ( )e n d n n z nu w .                      (28)

By squaring both sides of (27) and calculating the expected value

of the resulting expression, we get

2 2 T
o o a a

T T
a a a a

[ ( )] [ ( )] 2 [ ( ) ( ) ( )]

                 + [ ( ) ( ) ( ) ( )].

E e n E e n E e n n n

E n n n n

u v

v u u v
            (29)

According to the Principle of Orthogonality o a[ ( ) ( )] 0E e n nu ,

and by considering the analysis assumptions mentioned previously,

the learning curve is given by

a a

2 T T
min a a a a

T
min a a

[ ( )] { ( ) [ ( ) ( )] ( )}

             tr{ [ ( ) ( )]},

E e n e E n E n n n

e E n nu u

v u u v

R v v
          (30)

where 2
min o[ ( )]e E e n  is the minimum error in the steady-state

condition. Note that (30) is completely determined if the

weight-error covariance matrix T
a a( ) [ ( ) ( )]n E n nK v v  is known.

Then, by subtracting optw  from both sides of (19), determining the

outer product T
a a( ) ( )n nv v , and taking the expectation on both

sides of the resulting expression according to the simplifying

assumptions, we obtain

a a

a a

a a a a

a a a a

a a

-1
a

-1
a

2 -1
a

-1
a

2 -1 -1
a a m

( 1) ( ) ( ) [ ( )]

              [ ( )] ( )

              2 [ ( )]{2 ( )

             tr[ ( )]} [ ( )]

              2 [ ( )] [ ( )]

n n n E n

E n n

E n n

n E n

E n E n e

u u

u u

u u u u

u u u u

u u

K K K R D

D R K

D R K R

R R K D

D R D in .

        (31)

4. SIMULATION RESULTS

To assess the accuracy of the proposed model some examples are

presented considering a system identification problem, using white

and colored real input signals. The latter is obtained from an AR(2)

process given by 1 2( ) ( 1) ( 2) ( )x n a x n a x n v n , where ( )v n

is a white noise signal with variance 2
v . The AR coefficients are

1 1.3214a  and 2 0.8500a , resulting in an eigenvalue

dispersion of the input autocorrelation matrix of 305.89. The

measurement noise ( )z n  has a variance 2 410z (SNR 40dB).

The step-size values are 0.005  and 0.01  for white and

colored signals, respectively. The other parameters are 4M ,

4K , 2L , observation window length w 32M , and the

plant is a length-10 vector Hanning window. The transformation

used is DCT.

The curves of Fig. 2 are obtained for a white input signal, where

Figs. 2(a) and (b) illustrate the first and second moments of the

adaptive filter weights, respectively, obtained from Monte Carlo

(MC) simulations (average of 200 independent runs) and the
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proposed model (17) (first moment) and (30) (learning curve).

From that figure, a very good match between numerical

simulations and models is verified.

Fig. 3 illustrates the case for a colored input signal. Again, we can

observe a satisfactory accuracy of the predictions obtained with the

proposed model.
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Fig. 2. Model performance for white input signal with 0.01.

(a) Mean-weight behavior. (Gray lines) MC simulation (average of

200 independent runs). (Dark lines) proposed model. (b) MSE

curves. (Gray-ragged line) MC simulation. (Dark-solid line)

proposed model.

5. CONCLUSIONS

This paper has presented a stochastic model for the GSD-NLMS

algorithm. The proposed model is independent of the order of the

adaptive filter as well as of the type of orthogonal transform used.

The proposed analytical model is derived for a slow adaptation

condition and takes into account a regularization parameter (added

to the power estimate) which prevents division by zero in the

power normalization operation, being possible to assess its effect

on the algorithm behavior. Under the analysis conditions, the

proposed model exhibits a very good matching with numerical

simulations.
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Fig. 3. Model performance for colored input signal with

0.005 . (a) Mean-weight behavior. (Gray lines) MC simulation

(average of 300 independent runs). (Dark lines) proposed model.

(b) MSE curves. (Gray-ragged line) MC simulation. (Dark-solid

line) proposed model.
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