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ABSTRACT

This paper proposes a new stochastic model for the normalized

LMS (NLMS) algorithm under correlated input data. The proposed

model is derived without invoking the simplifying assumption that
T ( ) ( )n nx x  has a chi-square distribution to determine

T{1/[ ( ) ( ) / ]}E n n Nx x . Under correlated input data that assumption

is not correct and thus the resulting model becomes inaccurate.

Without considering such simplifying assumption, a high-order

hyperelliptic integral has to be computed. The proposed model is

based on tackling the solution of that integral. Numerical

simulations verify the quality of the proposed model.

1. INTRODUCTION

When an adaptive algorithm is modeled some simplifying

assumptions must be considered which make the involved

mathematics more tractable. The key point to obtain a reasonable

modeling (accurate) resides on the degree of truth of the

simplifying assumptions used. Accurate models are frequently

associated with a complex modeling mathematics; in other words,

the assumptions allowed for in such a process should be confirmed

for a wide range of operating conditions. For instance, the

stochastic modeling of the filtered-X LMS (FXLMS) algorithm

under the light of the independence theory (typically used for

modeling the LMS-like algorithms) [1] is not consistent, since such

an assumption disregards the correlations between input signal

vectors at different time lags created by the secondary path [2], [3].

In this way, the resulting model is simple but inaccurate to describe

the algorithm behavior. On the other hand, by considering all

correlations of the input signal vectors the obtained model is more

complex; however, it becomes much more accurate. It should be

pointed out that, in general, more than a single simplifying

assumption is used for algorithm modeling. However, the model

quality depends on the validity of all assumptions considered.

Concerning the modeling of the normalized LMS (NLMS)

algorithm, it reveals a particular obstacle to calculate the

expectation T T{ ( ) ( ) /[ ( ) ( ) / ]}E n n n n Nx x x x , which is needed to

obtain mean weight behavior. In [4], such an expectation is

determined by using the multivariate Gaussian density function of

the input signal vector. In doing so, there is no approximation in

this process; however, such a procedure leads to the computation of

a high-order hyperelliptic integral. Since in the open literature there

is no available solution for that kind of integral some shortcuts

must be adopted to determine such an expectation. Recently in [5],

the expectation T T{ ( ) ( ) /[ ( ) ( ) / ]}E n n n n Nx x x x  has been

approximated by T T{1/[ ( ) ( ) / ]} [ ( ) ( )]E n n N E n nx x x x  by invoking

the Averaging Principle [6], where T{1/[ ( ) ( ) / ]}E n n Nx x  is

obtained by assuming a chi-square distribution. Such assumption is

true only for white input signals. For correlated signals it fails,

resulting in a model mismatched with respect to the simulations,

mainly during the transient phase. In this work, we return to the

Bershad’s procedure [4], which provides an exact modeling, and

we tackle the solution of the hyperelliptic integral problem. We

propose here an accurate model for the NLMS algorithm with

correlated input data, obtained by solving a high-order indefinite

hyperelliptic integral. As a result, the new stochastic model

presents a very good agreement for both transient and steady-state

phases as compared with numerical simulations considering

correlated Gaussian input data.

2. PRELIMINARIES

This section presents the weight update equation of the NLMS

algorithm [1]. In addition, the simplifying assumptions permitting

to obtain the model expression, which is solved by using a new

approach, are stated. The weight updating equation is given by [4]
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where T( ) ( ) ( ) ( ) ( )e n d n n n z nw x  is the error signal and ( )z n

represents a measurement noise, i.i.d., zero-mean, with variance
2
z  uncorrelated with any other signal in the system. The input

vector is denoted by T( ) [ ( ) ( 1) ( 1)]n x n x n x n Nx  and its

variance is 2
x . By taking the expected value on both sides of (1),

it results in
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To determine the expectations in (2), the following simplifying

assumptions are used:

A1) ( )nw  and ( )nx  are statistically independent [1].

A2) T1/[ ( ) ( ) / ]n n Nx x  and T( ) ( )n nx x  are jointly stationary

processes, where T1/[ ( ) ( ) / ]n n Nx x  is slowly varying with respect

to T( ) ( )n nx x . In this way, the Averaging Principle can be invoked

[6], resulting in
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After using assumptions A1 and A2 in (2), we obtain the following

expression:
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where T[ ( ) ( )]E n nR x x  and [ ( ) ( )]E d n np x  are the input

autocorrelation matrix and the cross-correlation vector between the

desired response and the input vector [1]. Then, the main point now

is to determine the expected values A in (4).

3. DETERMINATION OF 
T{1/[ ( ) ( ) / ]}E n n Nx x

3.1 Problem statement

Regarding the modeling of the NLMS algorithm, a major

mathematical complexity arises when the expectation

T

1

( ) ( ) /
E

n n Nx x
,                                  (5)

must be determined. In [4] there is no approximation for computing

the expected value of the term containing T ( ) ( ) /n n Nx x  in the

denominator. Such a procedure is notably complex, since it

requires at the end that a high-order indefinite hyperelliptic integral

is solved. However, the solution of this integral does not yet have a

closed formulation as pointed out by the area literature. Recently in

[5], expression (5) has been determined considering that
T ( ) ( )n nx x  has a chi-square distribution with N degrees of

freedom. Therefore,

T 2

1

( ) ( ) / ( 2) x

N
E

n n N Nx x
.                      (6)

Such an assumption is true if and only if { ( )}x n  is an independent

Gaussian zero mean random variable [7], thus failing for correlated

ones.

3.2 Proposed approach

Since the modeling of the NLMS algorithm also requires the

determination of expected values such as

T 2

1

[ ( ) ( ) / ]
E

n n Nx x
,                               (7)

we propose a method to solve the general problem of the expected

values in question. Thus,

T T
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In (8) ( )f x  represents the multivariate Gaussian density function

of the input vector x(n). It is given by
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where det( )  denotes the determinant of a matrix.

Now, substituting (9) into (8) and defining a function ( )F  so that
T 1
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we return the expected value in question, making 0 . Thus,
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By differentiating (10) k times and using the properties of the

Gaussian density function, we obtain

1

( ) ( 1)

det( )

k k k

k

d F N

d B R
,                             (12)

where, from the simple algebraic manipulation, we get

1 12B I R ,                               (13)

where I represent the identity matrix.

Now, substituting (13) into (12), and integrating k  times the

resulting expression, we obtain

1/ 2
 fold
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1
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F N d d C
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The constant C  is obtained by considering that lim ( ) 0F . In

the literature there does not exist a closed form for a solution of a

high-order indefinite hyperelliptic integral (also known as Abelian

integral) (14). However, by considering the particular form of the

autocorrelation matrix R , we propose the following approach to

solve such an integral:

i) Decompose R  according to T
R Q Q , where Q  is the

eigenvector matrix and  is a diagonal matrix containing the

eigenvalues i  of R , respectively. It results in the

polynomial of th -degree.N  Thus,

1

det( 2 ) 1 2
N

i

i

I R .                      (15)

ii) From (15), the coefficient Na  of N  is 
1

2
N

N
N i

i

a  and

the roots of (15) are 1/(2 )i i .

iii) Substitute adjacent pairs of roots of (15) by its geometric

mean

k i j .                                    (16)

In this way, now (15) will have roots with multiplicity two. Thus,

we can rewrite (14) as follows:

1/ 2
1 / 2

1

[det( )] NN

d d
C

aI R
  (17)

Since we are interested in the result for 0 , the absolute value

operator can be disregarded.
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Then, considering partial fraction expansion of (17) the result of

the integral is
/ 2

1/ 2
1

1
ln( )
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N

i i

iN

d
A C

aI R
,         (18)

where

/ 2

1

1

( )

i N

i j

j
j i

A .                                (19)

Thus, by using the proposed approach, the expected values needed

for modeling the NLMS algorithm are now given by

/ 2

0
1

( ) ln( ),
( ) ( )

N

i iT
iN

N N
E F A

an nx x
       (20)

and

2 2 / 2

2
1

ln( ) .
[ ( ) ( )]

N

i i i iT
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N N
E A
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3.3. Learning curve and second moment of the weight-error

matrix

By defining the weight-error vector as 
opt

( ) ( ) ,n nv w w  the

error signal is given by

opt

T T

T
o

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

e n d n n n n z n

e n n n

x v x w

x v

           (22)

where o ( )e n  is defined as

opt

T
o ( ) ( ) ( ) ( )e n d n n z nx w .                    (23)

Squaring both sides of (23) and calculating the expected value of

the resulting expression, according to A1 and A2, and using the

Orthogonality Principle [1], we obtain

2 T T
min

T
min

[ ( )] [ ( ) ( ) ( ) ( )]

              = tr{ [ ( ) ( )]},

E e n e E n n n n

e E n n

x v x v

R v v
               (24)

where 2
min o[ ( )]e E e n  is the minimum error in steady-state.

Note that (24) is completely determined if the weight-error

covariance matrix T( ) [ ( ) ( )]n E n nK v v  is known. Then, by

subtracting
opt

w  from both sides of (1), determining the outer

product T( ) ( )n nv v , and taking the expectation on both sides of the

resulting expression according to the simplifying assumptions A1

and A2, we obtain

1 1

2 2
1 1 2

2 2
1 1 1 1 min

( 1) ( ) 2 ( ) 2 ( )

4 ( ) 4 ( )
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n n n E E n
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K K K R RK
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where

1
( ) ( )T

N
E E

n nx x
,                                 (26)

and

2

2 2[ ( ) ( )]T

N
E E

n nx x
                              (27)

are determined from (20) and (21), respectively.
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Fig. 1. Learning curves for correlated input signal. (a) 8N  and

eigenvalue dispersion of 46. (b) 16N  and eigenvalue dispersion

of 147. (c) 32N  and eigenvalue dispersion of 220.
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4. SIMULATION RESULTS

To assess the accuracy of the proposed model some examples are

presented considering a system identification problem. The input

signal is correlated, obtained from an AR(2) process given by

1 2( ) ( 1) ( 2) ( )x n a x n a x n v n , where ( )v n  is a white noise

signal with variance 2
v . The AR coefficients are 1 1.3214a  and

2 0.8500a . The measurement noise ( )z n  has a variance

2 410z (SNR 40dB).  In the examples, the step-size values

are selected to be max0.1 , where max  is the maximum step-size

for algorithm stability, determined experimentally.

The learning curves of Fig. 1 are obtained by using adaptive filters

with length-8, 16, and 32 and with eigenvalue dispersions of 46,

147, and 220, respectively. In all cases the results obtained with the

chi-square approach, proposed model, and Monte Carlo method

(average of 200 independent runs) are shown. From these curves,

the improved accuracy of the proposed model obtained by now

considering the proper correlations of the input data can be

observed.

5. CONCLUSIONS

This paper has presented a new stochastic model for the NLMS

algorithm under a slow adaptation condition. Due to the analysis

procedure used, the proposed model exhibits a satisfactory

accuracy for correlated input data. Numerical simulations confirm

the quality of the new obtained model.
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