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ABSTRACT

Adaptive blind equalization plays an essential role in modern com-
munication systems. We propose to improve the performance of
constant modulus algorithm (CMA) based equalizers by using an
adaptive convex combination of two CMA filters with a large and
small step size, respectively, in order to simultaneously obtain fast
convergence with low misadjustment during stationary periods.
Some experiments show the effectiveness of the new algorithm
and suggest that it is a reasonable alternative to blind equalizers
that commute between the CMA and the (decision-directed) least
mean square filter.

1. INTRODUCTION

Adaptive equalization techniques are of great importance in mod-
ern high-efficiency communication systems. Among all possible
schemes, blind equalizers that do not require the use of training
sequences, but make use of some statistical knowledge about the
transmitted signal, present a number of important advantages [1]:

• Simplified protocols in point-to-point communications, avo-
iding the retransmission of training sequences after abrupt
changes of the channel.

• Higher bandwidth efficiency in broadcast networks.

• Reduced interoperability problems derived from the use of
different training sequences.

Among all algorithms for blind equalization, the constant mod-
ulus algorithm (CMA) [2] plays a preeminent role. However, the
use of CMA equalizers with constellations whose symbols have
non-constant norms is subject, even for infinite signal-to-noise ra-
tios, to a component of gradient noise that is proportional to the
step size [3]. Using a small step size to minimize this pernicious
effect results in a slow convergence of the algorithm.

To avoid the above problem, it is common to use CMA to
get a coarse equalization of the channel, before transferring to a
decision-directed (DD) mode where the least mean square (LMS)
algorithm can be applied. However, this approach requires the de-
sign of appropriate procedures for transfer between both operation
modes (see, among many others, [4], [5]).

In this paper we propose an alternative solution based on the
adaptive combination of adaptive filters [6], [7], which consists
of a convex combination of a fast and a slow CMA filters (high
and low adaptation steps, respectively). The resulting scheme is
able to extract the best properties of each component, namely fast
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Fig. 1. Baseband model of a blind equalization system.

convergence after abrupt changes in the channel and low residual
error in steady-state.

2. THE CONSTANT MODULUS ALGORITHM

In Fig. 1 we have depicted a generic baseband model for the
blind equalization problem that we will consider throughout the
paper. The input to the equalizer, u(n), is a distorted version of
the transmitted signal, s(n), corrupted by selective attenuation,
inter-symbol interference, and additive noise. Assuming that the
channel can be modelled by a linear filter of length Q, u(n) is
given by

u(n) =

Q−1∑
i=0

hi(n)s(n − i) + e0(n), (1)

where h(n) = [h0(n), · · · , hQ−1(n)]T is the impulse response
vector of the channel at time n, and e0(n) is i.i.d. Gaussian noise.

The aim of the adaptive equalization block is to recover a sig-
nal z(n) that is as close as possible to s(n), so that the decision on
which symbol was originally transmitted, based on z(n), results in
a minimum number of errors. The adaptive equalizers that we con-
sider in this paper consist of two different stages (see Fig. 1). First,
signal u(n) is passed through an adaptive filter w(n) that aims to
recover the original constellation. Second, a phase recovery block
is used to obtain the correct constellation rotation.

Probably, the most popular algorithm for the blind optimiza-
tion of w(n) is Godard’s CMA [2], which consists in stochastic
gradient minimization of the following error function

J [w(n)] = E{|Rpq − |y(n)|p|q}, (2)

where |y(n)| is the modulus of the output of the filter, y(n) =
w

T (n)u(n), with u(n) = [u(n), u(n − 1), · · · , u(n − M +
1)]T , and Rpq is a positive constant whose value depends on the
constellation. In the following, we will just consider the case q =
2, using the simplified notation Rp = Rp2.
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For constant modulus constellations, it can be seen that by
minimizing (2), the CMA filter will try to output constant mod-
ulus values satisfying |y(n)|p ≈ Rp. However, it is shown in [2]
that this cost function can also be used to recover constellations
with non-constant modulus, such as pulse amplitude modulation
(PAM) or quadrature amplitude modulation (QAM). When s(n) is
not a constant modulus signal, the optimum value for Rp is given
by

Rp =
E{|s(n)|2p}

E{|s(n)|p}
. (3)

As discussed in [3], p = 2 offers superior performance to that
of other values, and so we will use this setting. Now, taking the
gradient of (2) with respect to w(n) results in the following CMA
update rule:

w(n + 1) = w(n) + µ[R2 − |y(n)|2]y(n)u∗(n), (4)

where µ is the step size and the * superscript denotes scalar or
vector complex conjugation.

In general, and given the insensitivity of (2) to rotations, it is
necessary to rotate the output of the CMA filter, so that the final
decision is based on z(n) = y(n) exp [−jφ(n)], where φ(n) can
be optimized, for instance, using the recursion [4]

φ(n + 1) = φ(n) − µφ�[z(n)e∗(n)], (5)

where �[·] denotes the imaginary part, and the error signal is de-
fined as e(n) = z(n)− ŝ(n), ŝ(n) being the decoded symbol, i.e.,
if A is the set of symbols in the constellation,

ŝ(n) = arg min
s′∈A

|z(n) − s
′|. (6)

The random component that appears when CMA is applied to
constellations whose symbols do not have a constant norm results
in a residual error term proportional to µ [3]. Consequently, the
step size of CMA imposes a tradeoff between speed of conver-
gence and final misalignment, even for infinite signal-to-noise ra-
tio (SNR). To illustrate this tradeoff, Fig. 2 shows the convergence
of two CMA filters with M = 35 taps, using step sizes µ1 = 10−4

and µ2 = 5 · 10−6. The symbols in s(n) belong to a 4-PAM con-
stellation1: A = {−3,−1, 1, 3} (R2 = 8.2). The response of the
channel is initially given by h1(n) = [0.1, 0.3, 1,−0.1, 0.5, 0.2]T ,
and then it is changed to h2(n) = [0.25, 0.64, 0.8,−0.55]T at
n = 500002. Figure 3 represents the steady-state symbol error
rate (SER) as a function of the SNR for both filters.

We can see that the µ1-CMA offers very fast initial conver-
gence, as well as after the change in the channel. A smaller step
size obtains lower error and SER but makes the convergence slow.
Indeed, these results show that speed of convergence and steady-
state performance are conflicting requirements for CMA-based equal-
ization.

3. ADAPTIVE COMBINATION OF CMA FILTERS

3.1. The Basic CCMA Algorithm

To obtain fast blind equalization together with low residual error,
several researchers have proposed to revert to a decision-directed

1Note that it is not necessary to recover the phase when using real con-
stellations.

2These channels are taken from [3] and [8], respectively.
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Fig. 2. Quadratic error incurred by two CMA equalizers (µ1 =
10−4 and µ2 = 5 · 10−6) in a system using 4-PAM modulation.
The SNR at the input of the equalizer is 20 dB.
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Fig. 3. Symbol error rate (SER) achieved by two CMA filters
(µ1 = 10−4 and µ2 = 5 · 10−6) in a 4-PAM system as a function
of the SNR at the input of the equalizer.

(DD) least mean square (LMS) filtering scheme after coarse equal-
ization of the channel is achieved by the CMA filter. However,
this approach requires the design of procedures for commuting be-
tween the CMA and LMS filters and vice-versa.

In this paper we present an alternative solution that is based on
the combination of adaptive filters of [6], [7]. The idea is to adap-
tively combine the outputs of one fast and one slow CMA filters
with step sizes µ1 > µ2. The output of the overall combination of
CMA filters (CCMA) is given by (see Fig. 4):

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n), (7)

where y1(n) and y2(n) are the outputs of both component filters,
and λ(n) is a mixing coefficient. The idea is that if λ(n) is as-
signed appropriate values at each iteration, then the combination
scheme will extract the best properties of each component filter.

In principle, both CMA filters are independently adapted using
their own outputs, i.e.,

wi(n + 1) = wi(n) + µi[R2 − |yi(n)|2]yi(n)u∗(n); i = 1, 2,

(8)
while the mixing parameter is optimized, using also a stochastic
gradient rule, to minimize

J = [R2 − |y(n)|2]2. (9)

However, instead of directly adapting λ(n), we will update a pa-
rameter a(n) that is related to λ(n) via a sigmoid function

λ(n) = sigm[a(n)] = {1 − exp [−a(n)]}−1
.
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Fig. 4. Adaptive convex combination of two CMA filters. Each
component is adapted using its own output, while the mixing pa-
rameter λ(n) uses the overall output of the filter.

The update equation for a(n) is then given by

a(n + 1) = a(n) −
µa

4

∂J(n)

∂a(n)
(10)

= a(n) +
µa

2
[R2 − |y(n)|2]λ(n)[1 − λ(n)]

×

[
∂y(n)

∂λ(n)
y
∗(n) + y(n)

∂y∗(n)

∂λ(n)

]
.

Now, substituting in the above expression the derivatives

∂y(n)

∂λ(n)
= y1(n) − y2(n) (11)

∂y∗(n)

∂λ(n)
= [y1(n) − y2(n)]∗ (12)

we obtain the final adaption rule for a(n)

a(n + 1) = a + µa[R2 − |y|2]�{y[y1 − y2]
∗}λ[1 − λ], (13)

where �[·] denotes the real part of a complex number, and where
we have omitted the time index n on the right hand side for reasons
of compactness.

As explained in [6], [7], the advantages of using the sigmoid
activation for λ(n) are twofold. First, it is an easy way to guar-
antee that λ(n) remains within the desired interval [0, 1]. Second,
the factor λ(n)[1 − λ(n)] in (13) reduces the adaptation speed,
and consequently also the gradient noise, near λ = 0 and λ = 1,
when the combination is expected to perform like one of the com-
ponent filters. Nevertheless, the update for a(n) could stop when-
ever λ(n) is too close to one of these limits. To circumvent this
difficulty, we restrict the values of a(n) to lie inside the interval
[−4, 4].

The proposed scheme has a very simple interpretation: when
fast or abrupt changes appear, the µ1-CMA filter achieves a lower
error according to the CMA cost function and, consequently, the
minimization of (9) results in λ(n) → 1. On the contrary, in
steady-state situations, it is the slow filter that works better, making
λ(n) → 0.

3.2. Speeding up Convergence of the Slow Component

A limitation of the basic CCMA scheme is that, after an abrupt
change in the channel, the steady-state error of the µ2-CMA fil-
ter can not be achieved until this component has completely con-
verged. To improve the performance of the overall scheme we will

use a modification of the method presented in [9], transferring at
each iteration a part of the weights from the fast filter to w2:

w2(n + 1) ← αw2(n + 1) + (1 − α)w1(n + 1), (14)

where α is a parameter close to 1.
The use of this weight transfer procedure over successive it-

erations will serve to speed up the convergence of the slow CMA
filter and, consequently, the convergence of the overall equalizer.
However, an uninterrupted application of (14) would increase the
steady-state error of the slow filter. To avoid this, weight transfer
should only be applied when the fast filter is clearly achieving a
better equalization of the channel, i.e., when λ(n) > β, where β

is a positive constant, which must be fixed close to the maximum
allowed value for λ(n).

Although this “speeding-up” mechanism requires two extra
parameters, we have checked that the CCMA filter is not very sen-
sitive to the selection of α and β. In any case, this weight transfer
mechanism should be seen as an optional procedure that can be
used to improve the performance of the basic combination in very
particular situations. Our extensive simulation work shows that
α = 0.9 and β = 0.98 are values that obtain good results in most
situations, and so these are the settings that we will keep in the
following.

4. EXPERIMENTS

In this section we will describe the performance of the CCMA
filter in a system using 16-QAM modulation: s(n) ∈ {±sR±jsI},
with sR and sI ∈ {1, 3}. For this constellation, we have R2 =
13.2. We will use in our experiments the same channel considered
at the end of Section 2, but now the change of the impulse response
of the channel occurs at n = 150000.

The settings for the CCMA filter are µ1 = 2 · 10−5 and µ2 =
10−6 for the component filters, and µa = 0.1 to adapt the mixing
parameter. The weights of both CMA filters were initialized with
zeros, and the initial value for the mixing parameter was a(0) = 0.
Finally, before delivering the signal to the decision block, y(n) is
rotated using (5) with µφ = 10−5.

Figure 5 represents, for two different values of the input SNR,
the average over 100 independent runs of the quadratic difference
between the transmitted signal and the signal delivered to the deci-
sion block, both for equalizers using the fast and slow CMA filters
only, and for the CCMA-based equalizer. As discussed in Section
2, the µ1-CMA filter has very fast convergence for both values of
the SNR, while the slow filter is able to achieve reduced misalign-
ment in steady-state, at the cost of slower convergence.

We can see that the combined CCMA scheme inherits the best
properties of each of the component filters, presenting fast conver-
gence together with the low residual error of the µ2-CMA. Fur-
thermore, it is important to remark that the weight transfer pro-
cedure allows the combined equalizer to achieve the steady-state
misalignment of the slow filter very soon, in comparison to the
convergence time of this component.

Figure 6 shows the effects of the channel and the CCMA equal-
izer on the transmitted signal s(n). The constellations represent
the last 10000 symbols that were received in a single run with
SNR = 20 dB. It is interesting to see that both CMA compo-
nents have converged to the same minimum of (2) (although with
a reduced gradient noise in the case of µ2-CMA), probably be-
cause of the application of the weight transfer procedure. Finally,
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Fig. 5. Quadratic error between the transmitted and equalized sig-
nals (after phase rotation) achieved by two CMA blind equalizers
(µ1 = 2 · 10−5 and µ2 = 10−6), as well as by their adaptive
combination (CCMA, µa = 0.1). The system uses 16-QAM mod-
ulation and the SNR at the input of the equalizer was tuned to (a)
20 dB, and (b) 30 dB.

in steady-state, z(n) is a rotated version of y2(n) that can be used
to recover the transmitted information with a very low SER.

The above results allow us to conclude that the CCMA scheme
can be used as a reasonable alternative to blind equalizers that
commute between CMA and LMS filters, and require the design
of appropriate procedures for transfer between algorithms.

5. CONCLUSIONS

In this paper we have presented a new algorithm for adaptive blind
equalization of communication channels that relies on a convex
combination of two CMA filters with different step sizes. Each
component filter is adapted independently using its own output,
while the combination is adapted in accordance with an overall
performance criterion.

Simulation examples show that the proposed scheme retains
the best properties of each component filter, namely fast conver-
gence and low residual misadjustment, and constitutes a very sim-
ple and effective alternative to other algorithms that pursue the
same goal, but require the (not always easy) commutation between
CMA and (DD) LMS modes.
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